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SUMMARY 

The uncertainties of blade tip displacement measurement using BTT are investigated through 
experiments. A novel test bench is established where the blade deformation can be measured 
simultaneously by laser displacement sensors and BTT, which enables the determination of the 
BTT measurement error. It is discovered that the rotational speed fluctuation is the primary 
factor that degrades the accuracy of BTT. The magnitude of error is dependent on the probe 
position and could be up to 0.5 mm even when the rotor is driven by a servo. Fortunately, it is 
also validated that using multiple keyphasors could effectively elevate the accuracy of BTT 
measurement. 

INTRODUCTION 

Rotating blades in turbomachinery are prone to deformation and vibration. Harmful vibrations may 
induce high-cycle fatigue, which eventually leads to failures. To ensure long-time reliability, 
accurate measurement of blade vibration is significant in the stage of R&D and during service life. 
Blade tip timing (BTT) is a popular technology for rotating blade certification and monitoring. A 
common method is to measure the time of arrival (ToA) of each blade by several sensors installed 
on the casing and then to calculate the blade tip displacements. Compared with strain gauges, BTT 
enjoys the advantage of being contactless, capable of long-term online monitoring of all the blades, 
and easy to deploy [1-3]. However, BTT measurement suffers from a severe undersampling problem 
because only a few samples could be collected within each revolution. In order to extract useful 
vibrational information from the undersampled data, researchers have put great effort into the 
development of processing algorithms [4-9]. Acquiring accurate tip displacement samples is still a 
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prerequisite to reliable mode recognition, which underlines the need for a high displacement 
measurement accuracy. In practice, it is often assumed that the rotational speed of the rotor can be 
regarded as uniform [1, 10]. However, Diamond et al. [11] proved experimentally that such an 
assumption is not naturally valid. In fact, it could introduce considerable errors. Further, Zhou et al. 
[12] analyzed the uncertainties caused by random speed fluctuations with normal distribution and 
uniform distribution. Recently, scholars have proposed some methods to reduce the error from 
speed fluctuation. Zhang et al. [13] proposed a method utilizing multiple keyphasors. They derived 
the measurement equation for this method and verified the feasibility by simulations. Ren et al. [14] 
proposed an error correction BTT (EC-BTT) method based on the modelling of speed fluctuation 
with different patterns and reducing them respectively. 
One main difficulty to determine the BTT’s accuracy is obtaining the benchmark data. A 
representative approach [15, 16] is to use strain gauges. However, the conversion from strain to 
displacement relies on finite element models. Since modelling errors are inevitable, the deduced 
displacements cannot function as benchmarks. Hence, the strain gauge is essentially an indirect 
method and is only suitable for researches about frequency domain characteristics. To study the 
accuracy of BTT, direct displacement measurements are still necessary. 
In this work, a calibration system based on a laser displacement sensor is designed to obtain the 
benchmarks. Based on this, we are able to quantify the measurement error of BTT. Additionally, a 
high-precision rotary encoder is used to determine the source of error. The performances of the 
basic once-per-revolution method and the multiple-keyphasor method are discussed. 

TIP DISPLACEMENT MEASUREMENT USING BTT 

Basic model 
Consider a set of BTT probes installed on a casing at the same axial position. To describe the 
motion of blades, two polar coordinate systems can be built. One is fixed on the casing, the other 
one is fixed on the rotor. Suppose that the axial and radial movements of the rotor are neglectable. 
Meanwhile, the rotor disk is assumed rigid because its deformation is trivial compared to the blades. 
Thus, the origins of the two reference frames should coincide on the rotational axis of the rotor. 
Figure 1 is a sketch of the described system. 
The circumferential coordinates in the two frames satisfy the following transformation: 

θC = θR + φ(t), (1) 

where the superscripts “C” and “R” stand for the casing and rotor frames, respectively. The angular 
displacement of the rotor disk is represented by φ(t). Suppose the i-th blade triggers the j-th BTT 
probe at time tnij in the n-th revolution, then the actual coordinate of the blade tip can be acquired 
by 

θblade, i
C  = θprobe, j

C  + 2π(n - 1), n = 1, 2, 3,… (2) 

since the installation angle of probe θprobe, j
C  is generally known. On the other hand, consider an 

undeformable blade, its ideal position at tnij is 

θ̄blade, i 
C = θ̄blade, i

R  + φ(tnij). (3) 

Usually, the design position of blade θ̄blade, i
R  in Eq. (3) and the tip radius r are known variables. 

Therefore, the tip displacement can be obtained by 

xnij = r (θblade, i
C  - θ̄blade, i

C ) = r (θprobe, j
C  + 2π(n - 1) - θ̄blade, i

R  - φ(tnij)). (4) 
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Equation (4) implies that BTT measurement relies on the modelling of φ(t) . This is usually 
accomplished by a keyphasor sensor, or the OPR (once per revolution) sensor in some literature. A 
simple but very common model utilizes only one keyphasor and assumes that the disk keeps 
rotating at a uniform speed during the time interval between two consecutive triggers. For 
simplicity, we name this basic model the Piecewise Uniform speed Model with Single keyphasor 
(PUM-S). Mathematically, the PUM-S expresses the disk’s angular displacement as 

φ(tnij) = 
tnij - tkey, n

tkey, n+1 - tkey, n
 + 2π(n - 1), (5) 

where tkey, n  is the instant when the keyphasor sensor is triggered in the beginning of the n-th 
revolution. 

 
Figure 1: Sketch of the sensor installation and the coordinate system 

Error analysis 
During operations, the loads on the rotor blades are essentially unsteady. Consequently, the real 
rotational speed of the disk is hardly uniform. A strict description of the speed is 

φ(t) = 2π(n - 1) + � ω(t) dt
t

tkey, n

, tkey, n ≤ t < tkey, n + 1. (6) 

Define period Tn = tkey, n + 1 - tkey, n, nondimensionalized time τ = (t - tkey, n) / Tn. Equation (6) can be 
rewritten as 

φ(τ) = 2π(n - 1) + Tn � ω(τ) dτ
τ

0
, 0 ≤ τ < 1. (7) 

The rotational speed can be decomposed using the Fourier series: 

ω = ω�n+� ak sin πkτ
∞

k = 1

+� bk cos πkτ
∞

k = 1

, (8) 

where the average speed ω�n = 2π / Tn. Generally, low frequency components account for a relatively 
large proportion in mechanical systems. Thus, the magnitude of ak and bk tend to decrease as k 
increases. Using Eq. (7) and (8), 

φ(τ) = 2π(n - 1) + Tn �ω�nτ - �
ak

πk
cos πkτ

∞

k = 1

+�
bk

πk
sin πkτ

∞

k = 1

�  + c. (9) 

We can define the uniform speed term φ�(τ) = Tnω�nτ = 2πτ and the fluctuating term 
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φ�(τ) = Tn ��
bk

πk
sin πkτ

∞

k = 1

-�
ak

πk
cos πkτ

∞

k = 1

�  + c. (10) 

The coefficients in Eq. (10) indicates that low frequency fluctuations of the rotational speed which 
correspond to small k may have considerable contributions to φ�(τ) , which would degrade the 
performance of the PUM-S model. 

PUM with multiple keyphasors 
A practical means to elevate the accuracy of the piecewise uniform speed model is utilizing 
multiple keyphasors (PUM-M). The principle can be explained through Taylor expansion  

φ(τ) = 2π(n - 1) + φ'(0)τ + o(τ2). (11) 

PUM neglects the terms with order larger than 1. Therefore, shrinking τ could effectively reduce the 
truncation error. 
From an engineering perspective, multiple keyphasors are easy to implement as long as single 
keyphasor has been established. Given the angular of position of m keyphasors θkey, m

R , the PUM-M 
can be expressed as 

φ(tnij) = 
tnij - tkey, n, m

tkey, n, m+1 - tkey, n, m
(θkey, m + 1

R  - θkey, m
R ) + θkey, m

R  + 2π(n - 1). (12) 

EXPERIMENTAL METHOD 

A high-accuracy test bench is built to determine the BTT measurement error as well as the source of 
it. Figure 2 shows the system configuration. Straight plate blades are adopted to simplify the rig 
design and manufacture. The tip radius for each blade is 270 mm. The blades are designed to be thin 
enough that obvious vibration can be created by merely the unsteady aerodynamic loads. Laser 
displacement sensors (LDS) are used to directly measure the blade tip displacement during 
operations, which is the most prominent feature of this bench. A slip-ring is used to transfer the 
signal from the rotating LDS to the stationary environment. The shaft is connected to a rotary 
encoder, which produces 10000 pulses in a single revolution. Hence, the rotational speed fluctuation 
can be captured with enough precision. 
Limited by the power of the motor, the maximum speed in the experiments is 1200 rpm. 
Nevertheless, the results are found representative enough. Optical BTT sensors are distributed at 
random angles around the blades. To synchronize the data from BTT, LDS, and the encoder, a 
single collection system is used. The clock frequency of the system is 50 MHz, which is accurate 
enough for the experiments presented here. 

RESULT AND DISCUSSION 

BTT measurement error 
Firstly, the raw measured data is studied in the time domain. Figure 3 compares the performance of 
BTT and LDS. Here, the basic PUM-S technique is adopted and the rotational speed is the averaged 
speed in each revolution. In Fig. 3, the displacement is set as 0 when the blade is at its balance 
position at 1500 rpm. Because the blades are designed to be thin and flat, they will suffer great drag 
force during rotation and bend notably. Accordingly, the data from LDS slowly drops to zero during 
acceleration. However, the BTT underestimates the displacement. This is due to the poor modelling 
of the angular movement of the disk. Using Eq. (11) to explain, the value of φ'(0) is overestimated, 
and the residue terms are inappropriately ignored, causing the estimated φ(τ) greater than the true 
value. Then from Eq. (4), the calculated displacement xnij will be smaller than the truth. 
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Figure 2: Test bench setup 

 
(a) Acceleration 

 
(b) Stable operation 

Figure 3: Displacement measured by BTT and LDS 

At a stable operational condition, the results of the two systems become close. Yet, not all the BTT 
samples coincide with the LDS plot. Additionally, the rotational speed exhibited in Fig. 3(b) is 
clearly fluctuating.  
To quantify the accuracy of BTT probes, two statistical indicators are studied. One is the correlation 
between BTT and LDS, the other one is the standard deviation of BTT errors. The results are 
plotted in Fig. 4. The scatters represent the measured data and the dashed lines show the fittings. 
Both the correlation and the deviation exhibit trends related to the rotational speed. The correlation 
is merely 0.2-0.8 at 300 rpm while it soars to more than 0.9 at 900 rpm. However, no obvious 
elevation can be observed when the speed further increases to 1200 rpm.  
Although the correlation at 300 rpm is low, the standard deviation is the smallest among the four 
cases. As the rotational speed grows, the deviation increases monotonously. Meanwhile, the 
distribution of the data is symmetric to the key-phase sensor. The opposite position to the key-phase 
sensor witnesses the maximum 3σ of more than 0.5 mm. Considering that a servo is used in our 
facility, the situation faced by an industrial rig could possibly be worse. 
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(a) Correlation coefficient between BTT and LDS              (b) Standard deviation of BTT error  

Figure 4: Statistical performance of BTT sensors at different angles 

Error source identification 
The most possible explanation for all the phenomena listed in the previous section is that the main 
source of error is speed fluctuation. At low speeds, the error and the truth share similar but small 
magnitudes, leading to a small deviation but also a low correlation. As the speed increases, both the 
displacement and the error increase, while the proportion of error in the displacement decreases. 
The correlation finally reaches an upper limit less than unit because of the existence of speed 
fluctuation error. 
To validate the explanation, the data from the rotary encoder is utilized. Figure 5 plots the error of 
φ(t)  estimation by PUM-S. In Fig. 5(a), the error displays a quasi-periodic pattern during 
acceleration. By contrast, the error is more of a random variable during stable operations in Fig. 
5(b). The magnitude of the φ(t) estimation error is just the same as the total error of BTT, etotal. To 
further demonstrate their relationship, we extracted the estimation error eφ at the BTT sampling 
instants and plot it against etotal as shown in Fig. 6. The scatter points display a typical proportional 
relationship. Therefore, we can prove that the main factor of contaminating BTT measurements is 
the speed fluctuation error. 

Elevating accuracy using multiple key-phases 
The capability of PUM-M to suppress the speed fluctuation error is studied. First, to corrected apply 
the PUM-M, the exact position of each keyphasor must be carefully calibrated. This is 
accomplished by taking the averages during stable operational conditions: 

θkey, m
R  = 

2π
N
�

tkey, n, m- tkey, n, 1

tkey, n + 1, 1 - tkey, n, 1

N

n = 1

. (13) 

Despite that we design the key-phases to distribute uniformly around the circumference, tiny offset 
is unavoidable: 

δm = θkey, m
R  - 

m
M

(14) 

where M is the total number of keyphasors. Figure 7 shows the convergence history of one key-
phase position. The offset δm quickly converges to a narrowband as the number of revolution N 
increases. It eventually stabilizes in a small interval of 0.004 mm, which is accurate enough 
compared to the BTT error. 
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(a) A segment during acceleration 

 
(b) Stable operation 

Figure 5: Error of φ(t) estimation by PUM-S 

 
Figure 6: Relationship between etotal and eφ 

 
Figure 7: Convergence of the keyphasor calibration 

Using the calibrated keyphasor positions, PUM-M can now work as expected. Figure 8 depicts the 
displacement calculated by PUM-M using the same dataset as in Fig. 3. Almost all the BTT samples 
coincide with the LDS result. Figure 9 plots the relationships between the number of keyphasors 
and the BTT error. More than 50 % of the error could be removed for probes 2 and 3. These are the 
two sensors farthest from the original keyphasor. The reduction of their errors could significantly 
improve the accuracy of whole circumferential data analysis. It is worth mentioning that in the 
experiment, the errors of all probes converge to 80 μm. However, they are supposed to decrease to 0 
as the number of keyphasors increases. The discrepancy between the theory and the practice comes 
from the defects in the mechanical structural. Due to the poor machining accuracy, the upper and 
lower pivot of the rotor are not well aligned. A flexible coupling is applied to connect the rotor shaft 
and the rotary encoder in order to alleviate the vibration at high speeds. Consequently, slight 
relative motion between the encoder and the shaft could take place, leading to the tiny difference  
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Figure 8: Displacement measurement using BTT (PUM-M) and LDS 

 
Figure 9: Descend of error with multiple keyphasors 

between the ideal signal and the measured signal from the encoder. Nevertheless, an accuracy of 80 
μm is well enough in industrial applications.  

CONCLUSIONS 

In this paper, a new test bench is designed to obtain the benchmark data of blade tip displacement. 
Based on this, the measurement error of BTT is studied. The conclusions are summarized as follows. 
First, when the basic PUM-S method is adopted, the speed fluctuation error is the main contributor 
to the total error of BTT.  
Second, the error varies among different BTT probes and exhibits a symmetric distribution to the 
key-phase sensor. On the opposite position, the standard deviation reaches its maximum. The 3σ is 
up to 0.5 mm. Considering that a servo is used in this work, the situation faced by an industrial rig 
could possibly be worse. 
Third, the application of PUM-M could effectively reduce the speed fluctuation error as long as the 
keyphasor positions are correctly calibrated. The standard error could drop to less than 0.1 mm 
when 8 keyphasors are used. Therefore, it is strongly recommended to use multiple key-phases 
when there is a high demand for measurement accuracy. 
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