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SUMMARY

In the present study, a powerful double-intake and rotor squirrel cage fan is designed and optimized
by using a developed optimization process loop based only on open source libraries: Dakota, Sa-
lome and OpenFoam. Thirteen design parameters are selected for the trimming and in the im-
pellers, blades and volute regions. The total efficiency and the force applied on the impeller are
improved by maximizing and minimizing their values, respectively. A coupling was achieved
between CFD, Latin Hypercube Sampling, Kriging metamodel and the Efficient Global Optimiza-
tion to find the optimal design. The design for Configuration 3 improved the initial efficiency by
7.9 % and was validated successfully against experiments with an error of 1.1 %.

INTRODUCTION

Range hoods are widely used during cooking activities due to their ability to extract emitted particles,
which cause the decrease of the air quality level and may induce respiratory diseases. Many researches
have been done in order to improve the captation of range hoods while decreasing the generated noise.
Most of the range hoods are equipped with a squirrel cage fan (SCF). The SCF has been extensively
used for decades in HVAC systems and other household appliances (bath room) [1]. The SCF is a
special centrifugal fan, also known as forward-curved multi-blade centrifugal fan. The disadvantages
of the SCF are: (I) the complex flow mechanisms in the rotor region, especially around the blades
where the flow is separated due to their two-dimensional circular arc profile [2]; (II) low generated
flowrate and pressure drop between the inlet and the outlet. The double-intake SCF has the ability
to fill in the low capacity of the SCF by increasing the pressure drop and the flowrate. However, the
complex flow mechanisms are subject to an optimization process in order to improve its efficiency.

Design of experiments (DOE) and metamodels have been used in the optimization process of the SCF
due to their ability to understand the influence of the different design parameters and converge toward
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an optimal design. Zhou et al. [3]. Zhou et al. [3] used for the design of an arc blade a modified
Hicks-Henne function, where the three amplitude coefficients were selected as input parameters. The
authors focused only on the blade profile function while the other parts of the SCF remained identical.
For the CFD, the commercial software ANSYS was used with a 3D incompressible solver and the
k-ω SST turbulence closure. The sampling points were obtained by a latin hypercube design and
the optimal design was selected by the NSGA-II method. The Kriging metamodel construction was
accomplished with the commercial software Matlab. The authors found that the values obtained by
the Kriging model were accurate with average relative errors of 2.7 % and 2.6 % for the efficiency and
flow rate, respectively. The selected optimal design improved the efficiency by 4.2 % compared to
the initial one. The numerical results were validated against experimental data with a maximum error
of 3.2 % in terms of efficiency. Kim and Seo [4] studied numerically the influence of cutoff location
and radius, and impeller width on the SCF efficiency. For the optimization process, the authors
employed the quadratic polynomial response surface method and CFD. The 3D incompressible solver
incorporated the standard k-ε model available in the commercial software CFX. The commercial
software SPSS was used for the construction of the metamodel. The validation of the numerical
results was accomplished against the experimental data of Kim and Kang [5] obtained by a hot-wire
probe around the initial SCF design. A maximum error of 20 % was observed between the numerical
and experimental radial velocity at the inlet. Kim and Seo [4] found that the quadratic polynomial
model improved the maximum efficiency and the static pressure coefficient by 38.8 % and 1.7 %,
respectively. However, any validation of the obtained results was accomplished either by CFD or
experiments.

Most of the published studies so far focused on the investigation and the optimization of the single
intake SCF. Yet, they used commercial softwares for the CFD calculations and optimization processes
[1, 6, 7]. In the actual study, a double-intake and rotor SCF is designed and optimized by coupling 3D
simulations and metamodels in order to improve the efficiency and the applied force on the impeller.
All the process is accomplished through open-source softwares. 11 design parameters are selected
in the rotor and volute regions as inputs for the optimization process. For the blade trimming, two
design parameters are employed. The sampling is accomplished with the Latin Hypercube Sampling
(LHS) approach and the CFD results are used to construct a response surface of a Surrogate Based
Optimization (herein Kriging). In order to expand the Kriging model predictions, the Efficient Global
Optimization (EGO) is employed to obtain the best configuration. The optimal configuration is finally
carefully validated against experimental data.

NUMERICAL MODELING

A 3D steady-state Navier-Stokes incompressible flow solver has been employed by using the open
source OpenFOAM 6 libraries to model the flow inside the double-intake SCF.

Geometrical modeling

Figure 1 displays multiple views of the double-intake SCF in Configuration 1. For all configurations,
a Latin Hypercube Sampling (LHS) has been used for sampling in the Design of Experiments (DoE)
method. The main difference between the three configurations is the number of the selected design
parameters. In configuration 1, 2 and 3 eleven, six and two designparameters are selected, respec-
tively. The hub in the three configurations has a conical shape and is constructed with a quadratic
Bezier curve. The hub’s diameter and height are 0.1042 m and 0.0298 m, respectively. The motor
housing is placed in the second wheel region and has a cylindrical shape with a diameter and height
of 0.0838 m and 0.1016 m, respectively. The first wheel contains the hub. The double-intake SCF is
a 60 bladed rotor. The blades are equipped with 4 digit NACA (0012).
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(a) left (b) right (c) front (d) rear

Figure 1: Different views of the double-intake SCF.

The SCF is placed in an open environment represented herein by a sphere having a diameter of
Dext = 1.3 m (Fig.2). The volute is connected to an exit duct with a length of Lp = 0.61 m. The
diameter of the exit duct was expanded with an angle of 7◦ in order to enhance the calculation stability
and to reduce the head losses.

Numerical methods

The 3D steady state incompressible Reynolds averaged Navier-Stokes (RANS) solver named Sim-
pleFoam is used to model the flow dynamics around the double-intake SCF. The SimpleFoam has
already shown its ability to model accurately the flow inside the rotating impeller with the multiple
reference frame (MRF) approach [8, 9, 10]. Furthermore, this solver offers time saving, especially in
an optimization process where more than 400 calculations are performed simultaneously.

A fully second-order scheme is used for the spatial discretization in order to minimize excessive
numerical dissipation. The Laplacian and gradient terms are discretized by using a bounded Gauss
linear numerical scheme. A linear approach is selected for the interpolation scheme. The SIM-
PLE (Semi-Implicit-Method for Pressure-Linked Equations) algorithm [11] enables to overcome the
pressure-velocity coupling. The generalized geometric-algebraic multi-grid (GAMG) solver with the
combined Diagonal incomplete-Cholesky/Gauss Seidel (symmetric) smoother is selected to solve the
pressure. The preconditioned bi-conjugate gradient (PBiCG) solver with Diagonal incomplete-LU
(DILU) pre-conditioner is used to solve the rest of the discretized equations.

The turbulent flow is modeled by the two-equation eddy viscosity Shear Stress Transport k−ω model
(k−ω SST) developed by Menter [12]. The k−ω SST model combines the robust formulation of the
k−ω Wilcox model [13] in the near wall region and the k− ε away from the wall. Very satisfactory
results were obtained by multiple authors when using the k−ω SST turbulence closure for modeling
turbulent flows in different fan configurations [14, 15, 16].

The boundary conditions of the computational domain are shown in Figure 2. Three regions are
distinguable: the rotor (impeller), the surrounding environment and the volute with the exit pipe. The
rotor region includes the two impellers, fan blades, the rotating ring and the hub. The two rotors
are connected through the bottom plate and rotate at 1844 rpm. A Python script was developed
to recalculate and adjust the value of the rotating speed for each configuration in order to converge
toward the target total pressure. An inlet mass flowrate condition of 0.3258 kg/s (590 cfm) is imposed
at the sphere surface with a turbulence intensity of 5 %. The air properties are assumed to be constant
and are evaluated at an ambient temperature of 293 K. A no slip wall condition is imposed at the blade
surfaces, hub, rotating ring and the disc plate. The same condition is also applied on the volute and
the exit pipe surfaces. A pressure outlet condition is imposed at the pipe outlet surface where a static
pressure of 216.781 Pa (0.87 inch water) is fixed. The multiple reference frame (MRF) approach is
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Figure 2: 3D sketch of the computational domain.

(a) whole domain (b) volute (c) rotor

Figure 3: Different views of the mesh distribution.

used to model the rotating motion of the rotor region.

Figure 3 shows different views of the unstructured fine grid mesh generated by the open-source soft-
ware Salome. The mesh is composed of tetrahedral and prismatic elements. Multiple mesh refine-
ments with factors equal to 4 and 3 are imposed in the volute and the exit pipe, respectively. Ten
prismatic layers are generated around the blades with a stretching factor of 1.1. The average total
number of elements is around 37.8 million cells, with 20.1 and 9.2 million cell elements in the rotor
and volute regions, respectively. The maximum value of the wall coordinate (y+) is lower than 0.9,
which satisfies the low-Reynolds number approach.

The calculations were run using HPC facilities provided by Calcul Québec. Each RANS calculation
took from 3 to 4 days using 32 processors (AMD Opteron 6172). During all the optimization process,
around 12800 processors were used. The convergence is achieved when the global fan efficiency
deviation is below 0.1 % and all residuals are lower than 10−7.

OPTIMIZATION PROCESS AND METHODS

Optimization loop

Figure 4 displays the optimization procedure. Firstly, the design space is determined by the input pa-
rameters’ minimum and maximum bounds. In Configuration 1, eleven input parameters are selected,
while in Configuration 2, only the relevant design parameters are kept (Tab.2). In Configuration 3, the
optimal design is trimmed using two design parameters. The input variables are:

1. D1/D2 is the ratio between the wheel interior and external diameters;

2. β1 is the blade leading edge angle (angle of attack);

3. β2 is the blade trailing edge angle (outlet angle);
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4. Rc/D2 is the ratio between the cutoff radial position and the wheel external diameter;

5. θc is the cut-off angular position;

6. θ f is the final radial angular position of the external spiral (volute);

7. IV/D2 is the ratio between the internal housing inlet height and the external wheel diameter;

8. P is the ratio between the position of the maximum camber and blade’s chord length ;

9. H2 is the height of one impeller;

10. D2 is the wheel external diameter;

11. rc/D2 is the ratio between the cutoff radius and the wheel external diameter;

12. Z1 is the position of the trimming along the blade;

13. Dc/D2 is the ratio between the cutting diameter and the external diameter of the wheel.

Table 1: Design parameters with lower and upper bounds.

Design parameters lower bound upper bound

D1/D2 [-] 0.8 0.9

β1 [◦] 85 115

β2 [◦] 28 45

Rc/D2 [-] 0.560 0.625

θc [◦] -30 -10

θ f [◦] 270 290

IV/D2 [-] 0.05 0.1

D2 [m] 0.1524 0.1778

rc/D2 [-] 0.035 0.07

P [-] 0.3 0.5

hmax [m] 0.08255 0.09652

Z1 [m] 0.001524 0.055702

Dc/D2 [-] 0.2 0.6

The different input variables are introduced to Dakota and a design of experiment (DOE) is conducted
by using the Latin hypercube sampling (LHS). The LHS is a stratified sampling method where the
uncertain variable range is divided into N requested samples. A random sample is selected from each
of the segments. The N values are combined in a shuffling operation to construct a set of N parameter
vectors with a correlation structure.

In the next step, Salome is loaded and the entire geometry and the computational domain are created
automatically. A Python script is used to check any irregularity in the geometry as holes, bad inter-
sections, etc. After, the Salome mesh library is executed according to a pre-set Python script with
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Figure 4: Chart of the optimization loop process.

all the mesh parameters. A CheckMesh function of OpenFOAM is used in order to ensure the mesh
quality. Then, the OpenFOAM directories are created automatically and all the calculations are run
simultaneously. Once the calculations finish, the objective functions, namely the global efficiency and
the force applied on the impellers, are calculated and saved in a results file.

Metamodel approach

The metamodel construction process is displayed in Fig.5. Multiple surrogate models exist and have
been tested in the past such as radial basis functions, polynomial regression, neural networks, etc. In
this study, the Kriging metamodel is selected due to its ability to predict accurately the efficiency [17].
It is based on a Gaussian stochastic process of the modeled objective functions. Mathematically, the
Kriging function prediction at a point (design parameter) x is defined as:

f̂ (x) = µ̂ +ψR−1(Y −1µ̂) (1)

where µ̂ is the maximum likelihood estimator and f̂ (x) is the predicted objective function. Y repre-
sents a set with a dimension N of the calculated data and is expressed as follows:

Y = [ f (x(i))... f (x(N))] (2)

Herein, f (x) represents the value obtained by CFD. ψ are the basis functions.

In addition to the Kriging metamodel, the efficient global optimization (EGO) method is applied to
predict the objective functions. The EGO has been developed by Jones et al. [18] and is based on
the Kriging metamodel. However, the EGO has the ability to select the next sample point with the
maximum probability to converge toward the optimal values. The probability is defined as an expected
improvement (EI) function calculated as:

E(I(x)) =
(

fmin − f̂
)

Φ

(
fmin − f̂

s

)
+ sφ

(
fmin − f̂

s

)
(3)

where fmin is the obtained minimum value from the CFD calculations and f̂ is the value predicted
by the Kriging model. s is the standard error. φ(.) and Φ(∆) are the standard normal density and
distribution function, respectively. I(x) is the improvement at the point x. The EGO is an iterative
process and will continue until a global optimal is found and validated.
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Figure 5: Chart of the metamodel optimization process.

RESULTS

In this section, the results of the optimization process are presented for the three configurations.

Performance comparison

The optimal values of the total fan efficiency ε and the force applied on the impellers Fxy are de-
termined after completing all the optimization process for the LHS approach and constructing the
surrogate models. The objective of the optimization is to minimize Fxy in order to reduce the mechan-
ical damage on the impellers while maximizing ε .

The predicted values of the objective functions obtained by the different approaches are presented in
Table 2. In all configurations, the Kriging model predicts with accuracy the ε and Fxy values with a
maximum error of 3 % and 4.5 %, respectively. The main limitation of the Kriging response values
is the existence of a highly turbulent flow with 3D vortices interacting with the impeller blades.
In Configuration 1, The Kriging model improves the efficiency by 0.1 % compared to the optimal
LHS design. The EGO converges toward an optimal design after 5 iterations and enhances ε while
decreasing Fxy by 2.6 % and 30.7 %, respectively. The EGO approach expands the design space
compared to the Kriging model, which increases the probability to find an optimal design that meets
the requirements. In Configuration 2, only the relevant parameters are selected and the total design
parameters are reduced to 6, which will decrease the data noise and allows a remarkable improvement
by 5.2 % and 29.7 % of the efficiency and applied force, respectively, compared to Configuration 1’s
LHS design. As in Configuration 1, the optimal design with the EGO model improves the results,
specifically Fxy by 20.6 % compared to the Kriging model validation. In Configuration 3, the optimal
design of configuration 2 (EGO) is trimmed according to the design parameters Z1 and Dc/D2. The
LHS results show a slight improvement in the efficiency by 0.1 %. However, Fxy is impaired by 1.1 %.
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Table 2: Summary of the predicted objective function values by the different models. Relative errors (%) compared to the
OpenFOAM validation are indicated between (−). The design parameters with / are not considered.

Configurations Method D2 [m] D1/D2 [-] P [-] β1 [◦] β2 [◦] Rc/D2 [-] rc/D2 [-] θc [◦] θ f [◦] IV/D2 [-] hmax [m] Z1 [m] Dc/D2 [-] ε [%] Fxy [N]

Configuration 1

LHS

Kriging

OF validation

EGO

0.1745

0.1666

0.1666

0.1524

0.87768

0.8056

0.8056

0.8358

0.4713

0.4999

0.4999

0.4593

86.869

107.4029

107.4029

109.6642

29.336

38.1654

38.1654

28.8128

0.56405

0.5673

0.5673

0.5977

0.04426

0.0509

0.0509

0.0695

-28.8634

-28.6150

-28.6150

-27.1734

277.776

288.2595

288.2595

289.7339

0.06001

0.06887

0.06887

0.0587

0.0924

0.0852

0.0852

0.0837

/

/

/

/

/

/

/

/

52.2

53.5(1.2 %)

52.3

54.8

2.94006

2.6001 (4.1 %)

2.7116

2.0362

Configuration 2

LHS

Kriging

OF validation

EGO

0.1658

0.1662

0.1662

0.1676

0.8132

0.8396

0.8396

0.8088

/

/

/

/

/

/

/

/

36.11

36.4

36.4

37.6

0.5727

0.5935

0.5935

0.5709

/

/

/

/

/

/

/

/

-13.6

-27.61

-27.61

-29.19

/

/

/

/

0.0892

0.0929

0.0929

0.0971

/

/

/

/

/

/

/

/

57.4

61.9 (2.9 %)

59

59.8

2.064

2.355 (4.5 %)

2.466

1.959

Configuration 3

LHS

Kriging

OF validation

EGO

0.1676

0.1676

0.1676

0.1676

0.8088

0.8088

0.8088

0.8088

/

/

/

/

/

/

/

/

37.6

37.6

37.6

37.6

0.5709

0.5709

0.5709

0.5709

/

/

/

/

/

/

/

/

-29.19

-29.19

-29.19

-29.19

/

/

/

/

0.0971

0.0971

0.0971

0.0971

2.19

1.13

1.13

1.13

0.60

0.62

0.62

0.40

56.9

59.6 (3 %)

56.9

60

1.98

2.19 (3.1 %)

2.26

2.11

As observed in Configurations 2 and 3, the EGO model provides the optimal design with ε and Fxy of
60 % and 2.1 N, respectively.

Mean flow field

Figure 6: Distribution of the static pressure p (Pa) on planes 1 and 2 for optimal configurations 1, 2 and 3.

Figure 6 displays the 2D contours of the pressure distribution on planes 1 and 2. They are located at
the mid-height of the impellers 1 and 2, respectively. The hole in plane 2 represents the shape of the
motor housing. In Configuration 1, the flow in both impellers is comparable with an acceleration near
the top left of the impeller and a recirculation region around the cut-off. However, in Configurations
2 and 3, the recirculation disappears and the acceleration region is smaller and concentrated in the
top region near the 0◦ angular position. The acceleration region in the three configurations collapses
with the blade separation (seen from the total pressure not shown here), which confirms the obtained
results in Table 2. As the flow around the blade is attached, the total efficiency is increased. The motor
housing has any effect on the pipe flow patterns. However, in the rotor region, the housing causes an
obstruction leading to higher flow acceleration as the flow rate is constant.

Validation

An experimental prototype was built based on the design of configuration 3 which produced the
optimal objective functions. The static pressure and voluminal flowrate were recorded experimentally
and compared to the numerical results. Experimentally, the computational domain was reproduced in
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Figure 7: Pressure drop ∆p of the fan as a function of the flowrate. Comparison between the present solver (dashed
lines) and experiments (circles).

order to avoid any discrepancies (Fig.2). The experimental process consists of recording the generated
flowrate by fixing the rotation speed of the fan and the outlet pressure. The effective surface at the
exit was controlled to vary the outlet pressure. The velocity and the pressure were measured by a
digital manometer with an accuracy of ±1 % and ±3 %, respectively. The CFD calculation predicts
very accurately the pressure drop for all flowrates with a maximum error of 3.6 % at 670 cfm. At the
design point (590 cfm), the pressure drop is predicted with an error of 1.1 %.

CONCLUSION

This paper reported numerical results of the double-intake SCF optimization, using open source li-
braries. An optimization loop was developed using Dakota, Salome and OpenFOAM. The LHS and
metamodels were used to deliver the optimal design with the best objective functions values. Multiple
configurations have been tested with different design parameters and trimming processes.

Configuration 3 produced the optimal values of the objective functions, by offering a trade off between
the efficiency ε and the force applied on the impeller Fxy. By removing the nonsignificant parameters
in Configuration 1 and by applying a trimming on the blades, ε and Fxy were improved by 7.9 % and
28.2 %, respectively. For all configurations, the EGO approach converged toward the optimal design
due to the expansion of the design space and the improvement prediction.

The distributions of the static pressure p in planes 1 and 2 showed a flow acceleration in the impeller
top region. In the impeller with the motor housing, the flow is more accelerated due to the obstruction.
In Configuration 1, a recirculation region was observed near the cut-off region in both impellers. In
Configurations 2 and 3, the acceleration region is more concentrated near the 0◦ angular position.

Future works should integrate the blade sweeping effect along the span. Furthermore, running un-
steady calculations based on more advanced turbulence closures are deemed necessary to investigate
the flow dynamics of the coherent structures near the cut-off region.
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