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SUMMARY 

This investigation models the kinematics of the vortex system of an encased axial turbomachine 
at part load and overload applying analytical methods. So far, the influence of the casing and the 
tip clearance on the kinematics was solved separately. The vortex system is composed of a hub, 
bound and tip vortices. For the nominal operating point 𝜑𝜑 ≈ 𝜑𝜑opt and negligible induction, the 
tip vortices transform into a screw. For part load operation 𝜑𝜑 → 0, the tip vortices wind up to a 
vortex ring, i.e. the pitch of the screw vanishes. For overload operation 𝜑𝜑 → ∞, the vortex 
system of the turbomachine forms a horseshoe, i.e. the pitch of the screw becomes infinite. 
Both, hub and tip vortices, are semi-infinite, straight vortex filaments.  

INTRODUCTION 

By now, the common understanding is, that rotating stall and the resulting noise and vibration 
within a turbomachine is a dynamic effect. This means, that frictional forces lead to boundary layer 
separation and eventually stall in rotating machines [1], [2]. This understanding is recently 
confirmed by Cloos et al. [3] both, experimentally and analytically, for the most generic machine, a 
flow through a coaxial rotating circular tube. According to Cloos et al. [3], "wall stall" – a term 
coined by Greitzer [1] in contrast to "blade stall" – is caused at part load by the interaction of axial 
boundary layer and swirl boundary layer flow, i.e. the influence of centrifugal force on axial 
momentum. For "wall stall", the axial velocity component 𝑢𝑢𝑧𝑧 vanishes at the line 𝑧𝑧 = −𝑧𝑧0, 𝑟𝑟 = 𝑎𝑎 
(axial coordinate in mean flow direction 𝑧𝑧, distance 𝑧𝑧0 from the reference point on the line of 
symmetry 𝑟𝑟 = 0, radial coordinate 𝑟𝑟, tube radius 𝑎𝑎; cf. Figure 1). 
This paper analyzes the flow situation in encased axial turbomachines for small viscous friction. 
This work shows, that "wall stall", i.e. 𝑢𝑢𝑧𝑧(−𝑧𝑧0,𝑎𝑎) = 0, can also be a result of kinematics only, due 
to induced velocities of the vortex system superimposed with the axial main flow. The structure of 
the vortex system, especially the tip vortices, depends on the operating point of the turbomachine. 
Furthermore, the tip vortices rotate with a sub-synchronous frequency Ωind (Karstadt et al. [4], Zhu 
[5]. The aim of the present investigation is to analyze the influence of the vortex system in encased 
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axial turbomachines and its circulation strength on the observed phenomena, yielding the research 
questions: 

1. Is it possible to explain by means of analytical methods the sub-synchronous frequencies 
observed for turbomachines? 

2. Can "wall stall" be a result of kinematics only? 
To answer these questions, this work first employs vortex theory for an encased axial turbomachine, 
followed by the application of fundamental solutions. For machines without casing like wind 
turbines and screw propellers, vortex theory is well described by Betz [6], Goldstein [7], Glauert [8] 
and van Kuik [9]. The method is not yet developed in such a degree for encased turbomachines 
requiring the flow potential of a vortex ring inside a tube. Pelz et al. [10] recently derived this 
solution. 
In addition, to enlarge the investigation on the whole operating range of a turbomachine, we 
investigate the structure and kinematics of the vortex system at heavy overload, applying theory of 
functions (complex analysis). For turbomachines, the flow number 𝜑𝜑 ≔ 𝑈𝑈 Ω𝑎𝑎⁄  defines the 
operating point (e.g. part load or overload). The flow number is the ratio of axial free-stream 
velocity 𝑈𝑈 to the circumferential velocity Ω𝑎𝑎, where Ω = 2𝜋𝜋𝜋𝜋 is the rotational speed (the scaling to 
Ω𝑎𝑎 and not to Ω𝑏𝑏, with the blade tip radius 𝑏𝑏, is common in the context of turbomachines and 
therefore used here as well [11]. 

  
Figure 1: A coaxial vortex ring of transient strength 𝛤𝛤𝑡𝑡  and 

radius 𝑏𝑏 in a circular tube of radius 𝑎𝑎, according to the 
case 𝜑𝜑 → 0. The sketch is for 𝑍𝑍 = 1, i.e. one bound vortex 

only to improve clarity. 

Figure 2: A horseshoe vortex of strength 𝛤𝛤 and radius 𝑏𝑏 in 
a circular tube of radius 𝑎𝑎, according to the case 𝜑𝜑 → ∞. 

The sketch is for 𝑍𝑍 = 1, i.e. one bound vortex only to 
improve clarity. 

For the nominal operating point 𝜑𝜑 ≈ 𝜑𝜑opt and negligible induction, the vortex system of an encased 
axial turbomachine consists of a hub, 𝑍𝑍 bound and 𝑍𝑍 tip vortices, with 𝑍𝑍 the number of blades. The 
tip vortices transform into helices with a pitch of 2𝜋𝜋𝜑𝜑𝑎𝑎. 

For part load operation 𝜑𝜑 → 0, see Figure 1, the 𝑍𝑍 helices "roll up" and form a vortex ring, i.e. the 
pitch of the helices vanishes. The vortex ring is continuously generated by the bound vortex system. 
Hence, the coaxial vortex ring strength is transient. A nice picture for this vortex ring is that of a 
thread spool rolling up and gaining strength over time. This picture will explain some transient 
phenomena using kinematic arguments only. 

The case of heavy overload occurs for infinitely high flow numbers 𝜑𝜑 → ∞; see Figure 2. The hub, 
the bound and the tip vortices form a horseshoe, i.e. the pitch of the helices becomes infinite. Both, 
hub and tip vortices are semi-infinite, straight vortex filaments. In real turbomachines, the flow 
number cannot be adjusted to infinity, but is limited to a maximum value  𝜑𝜑�  due to flow rate 
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limitations and geometric restrictions. Nevertheless, the analysis of this limiting case is important 
for the basic understanding of the vortex system in axial turbomachines. 
To develop physical understanding of the whole picture in detail, the paper is organized as follows. 
Section 1 gives a short literature overview. Section 2 uses vortex theory to determine the strength of 
the vortices. Subsequently, section 3 derives the velocity potential of a coaxial vortex ring within a 
circular tube at part load and the induced rotating frequency. The flow potential and the induction at 
overload is introduced in section 4. The paper closes with a short outlook to potential applications 
in section 5 and a discussion in section 8. 

LITERATURE REVIEW 

Investigations of vortex systems in fluid dynamics trace back to the work of Helmholtz [12], who 
formulated the Helmholtz's theorems as a basis for the research concerning rotational fluid motion. 
Didden [13] performed measurements of the rolling-up process of vortex rings and compared the 
results with similarity laws for the rolling-up of vortex sheets. 
Besides the investigation of vortex kinematics, a broad research field on vortex structures in 
turbomachines is the experimental and numerical analysis of acoustic and noise emission of tip 
vortices [14]–[17]. The noise of a fan is noticeable by a CPU, car or a rail vehicle cooler. All three 
examples are met in the everyday life. One of the main reasons for the noise is the gap 𝑠𝑠 ≔
(𝑎𝑎 − 𝑏𝑏) 𝑎𝑎⁄  between the housing and the impeller tip. With increasing gap, the noise emission and 
the energy dissipation increase [18], [19]. Karstadt et al. [20] and Zhu [5] investigated noise and 
dissipation due to tip vortices. 
The kinematics for an encased axial turbomachine operating at part load or overload, are not fully 
understood yet. Especially the basic kinematics of these phenomena are not sufficiently analyzed. 

VORTEX THEORY 

An encased axial turbomachine with 𝑍𝑍 impellers is considered. The sketched vortex system (see 
Figure 1 and Figure 2) results from the 𝑍𝑍 bound vortices. The generation of a bound vortex was 
explained by Prandtl [21] using arguments of boundary layer theory and Kelvin's circulation 
theorem. The presence of viscosity is essential for the creation of the bound vortex, but the 
generation phase is not in the scope of this paper. For vortex generation, we would like to refer the 
reader to the work of Prandtl [21]. 

By vortex theory, each blade 1 …𝑍𝑍 of length 𝑏𝑏 is represented by its bound vortex of strength Γ. For 
simplicity, this investigation assumes Γ to be constant in radial direction along the blade from 𝑟𝑟 = 0 
to 𝑟𝑟 = 𝑏𝑏. As a vortex filament cannot end in a fluid due to Helmholtz's vortex theorem, a free, 
trailing vortex springs at each blade end 𝑟𝑟 = 0 and 𝑟𝑟 = 𝑏𝑏; see Figure 1 and Figure 2. These vortices 
are of the same strength as the bound vortex. At the inner end 𝑟𝑟 = 0, a straight semi-infinite vortex 
line 0 ≤ 𝑧𝑧 ≤ ∞ of strength 𝑍𝑍Γ – the so called hub vortex – attaches to the blade. The tip vortices at 
the outer end 𝑟𝑟 = 𝑏𝑏 are helices. The axial distance of the each helix winding, i.e. the helix pitch, is 
given by 𝑈𝑈 𝜋𝜋⁄ = 2𝜋𝜋𝑎𝑎𝜑𝜑. Depending on the load, these helices either "wind up" (𝜑𝜑 → 0), forming a 
vortex ring, or stretch to infinity (𝜑𝜑 → ∞), yielding a straight, semi-infinite vortex line. 

Regardless of the flow number 𝜑𝜑, the semi-infinite straight vortex line at 𝑟𝑟 = 0 induces the 
circumferential velocity 𝑍𝑍Γ/(4𝜋𝜋𝑏𝑏) at 𝑧𝑧 = 0, 𝑟𝑟 = 𝑏𝑏 due to the Biot-Savart law. Hence, the induced 
rotational speed is Ωind = 𝑍𝑍Γ/(4𝜋𝜋𝑏𝑏2). 

In a next step, this analysis calculates the vortex strength 𝑍𝑍Γ, employing the angular momentum 
equation and the energy equation. On the one hand, the axial component of the angular momentum 
equation is 𝑍𝑍Γ/2𝜋𝜋 = d𝑀𝑀/d�̇�𝑚. Here, 𝑀𝑀 is the axial torque component and  �̇�𝑚 the mass flux. 
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Multiplying the momentum equation by Ω yields 𝑍𝑍Γ𝜋𝜋 = d𝑃𝑃/d�̇�𝑚. 𝑃𝑃 = 𝑀𝑀Ω is the power applied to 
the fluid by means of the rotating bound vortices. On the other hand, the energy equation for an 
adiabatic flow reads d𝑃𝑃/d�̇�𝑚 = Δℎt, with Δℎt being the difference in total enthalpy experienced by a 
fluid particle passing the cross-section 𝑧𝑧 = 0. Both arguments result in the relation 𝑍𝑍Γ𝜋𝜋 = Δℎt. 

From turbomachine theory, the expression Δℎt = (Ω𝑏𝑏)2(1− 𝜑𝜑 𝜑𝜑�⁄ ) can be derived from the 
equation mentioned above. The dimensionless design parameter 𝜑𝜑�  equals the tangent of the blade's 
trailing edge angle 𝛽𝛽2, i.e. 𝜑𝜑� = tan𝛽𝛽2. Hence, the relation between 𝑍𝑍Γ and Ω yields 

𝑍𝑍Γ𝜋𝜋
(Ω𝑏𝑏)2 = 1 −

𝜑𝜑
𝜑𝜑�

. (1) 

As equation (1) shows, the total change in circulation 𝑍𝑍Γ along the plane of the machine is linked to 
the flow number 𝜑𝜑 by Euler's turbine equation. 

THE VORTEX SYSTEM AT HEAVY PART LOAD 

For the limiting case of interest 𝜑𝜑 → 0, the relation between 𝑍𝑍Γ and Ω, equation (1), yields Δℎt  =
 𝑍𝑍Γ𝜋𝜋 = (Ω𝑏𝑏)2. This results in an induced sub-synchronous frequency 

Ωind
Ω

=
1
2

, for 𝜑𝜑 → 0. (2) 

This induced frequency is in surprisingly good agreement with measured sub-synchronous 
frequencies 0.5Ω… 0.7Ω of rotating stall of compressors, fans and pumps at part load operation [11] 
and may result in a rethinking of rotating stall from a kinematic perspective. 

This investigation is now set to analyze the kinematics of coaxial vortex rings of radius 𝑏𝑏 and 
maximal strength Γ𝑡𝑡 = 𝑍𝑍Γ𝜋𝜋𝑛𝑛 < (Ω𝑏𝑏)2𝑛𝑛 as sketched in Figure 1. By doing so, Laplace's equation 

1
r
𝜕𝜕
∂r
�𝑟𝑟
𝜕𝜕Φ
∂r
� +

𝜕𝜕2Φ
𝜕𝜕𝑧𝑧2

= 0 (3) 

for the velocity potential Φ, with 𝑢𝑢�⃗ = ∇Φ, is solved for an incompressible, axisymmetric flow. Pelz 
et al. [10] recently derived the velocity potential for a coaxial vortex ring filament in a circular tube, 
yielding 

𝜙𝜙(𝑟𝑟, 𝑧𝑧) ≔
Φ
𝑈𝑈𝑎𝑎

=
𝑧𝑧
𝑎𝑎
− 2𝜏𝜏𝛽𝛽2�

𝐽𝐽1(𝑘𝑘𝑛𝑛𝛽𝛽)
𝑘𝑘𝑛𝑛𝐽𝐽02(𝑘𝑘𝑛𝑛) 𝐽𝐽0 �𝑘𝑘𝑛𝑛

𝑟𝑟
𝑎𝑎
� exp�−𝑘𝑘𝑛𝑛

|𝑧𝑧|
𝑎𝑎
�

∞

𝑛𝑛=1

, (4) 

with 𝐽𝐽0, 𝐽𝐽1 the Bessel function of orders 0 and 1, respectively, and 𝑘𝑘𝑛𝑛 the zeros 𝜋𝜋 = 1 …∞ of the 
function 𝐽𝐽0′ (𝑘𝑘𝑛𝑛) = −𝐽𝐽1(𝑘𝑘𝑛𝑛) = 0. The dimensionless velocity potential 𝜙𝜙 depends on the 
dimensionless ring radius 𝛽𝛽 ≔ 𝑏𝑏/𝑎𝑎 and the dimensionless vortex strength 𝜏𝜏 ≔ Γ𝑡𝑡/ 2𝑏𝑏𝑈𝑈. Since Γ𝑡𝑡 
increases linearly in time, 𝜏𝜏 can also be interpreted as a parametric time of the process. 

Stokes stream function for this flow is (using the integrability conditions 𝜕𝜕𝜕𝜕/𝜕𝜕𝑧𝑧 = −𝑟𝑟 𝜕𝜕𝜙𝜙/𝜕𝜕𝑟𝑟 and 
𝜕𝜕𝜕𝜕/𝜕𝜕𝑟𝑟 = 𝑟𝑟𝜕𝜕𝜙𝜙/𝜕𝜕𝑧𝑧 [10]) 

𝜕𝜕(𝑟𝑟, 𝑧𝑧) ≔
Ψ
𝑈𝑈𝑎𝑎2

= −
1
2
�1 −

𝑟𝑟2

𝑎𝑎2
� + 2𝜏𝜏𝛽𝛽2�

𝐽𝐽1(𝑘𝑘𝑛𝑛𝛽𝛽)
𝑘𝑘𝑛𝑛𝐽𝐽02(𝑘𝑘𝑛𝑛) 𝐽𝐽1 �𝑘𝑘𝑛𝑛

𝑟𝑟
𝑎𝑎
� exp�−𝑘𝑘𝑛𝑛

|𝑧𝑧|
𝑎𝑎
�

∞

𝑛𝑛=1

. (5) 

With the stream function, the radial velocity component 

𝑢𝑢𝑟𝑟(𝑟𝑟, 𝑧𝑧)
𝑈𝑈

= 2𝜏𝜏𝛽𝛽2�
𝐽𝐽1(𝑘𝑘𝑛𝑛𝛽𝛽)
𝐽𝐽02(𝑘𝑘𝑛𝑛) 𝐽𝐽1 �𝑘𝑘𝑛𝑛

𝑟𝑟
𝑎𝑎
� exp �−𝑘𝑘𝑛𝑛

|𝑧𝑧|
𝑎𝑎
�

∞

𝑛𝑛=1

 (6) 

and the axial velocity component 
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𝑢𝑢𝑧𝑧(𝑟𝑟, 𝑧𝑧)
𝑈𝑈

= 1 + 2𝜏𝜏𝛽𝛽2�
𝐽𝐽1(𝑘𝑘𝑛𝑛𝛽𝛽)
𝐽𝐽02(𝑘𝑘𝑛𝑛) 𝐽𝐽0 �𝑘𝑘𝑛𝑛

𝑟𝑟
𝑎𝑎
� exp �−𝑘𝑘𝑛𝑛

|𝑧𝑧|
𝑎𝑎
�

∞

𝑛𝑛=1

 (7) 

are given. The velocity field (equation (6) and (7)) takes the induction of the vortex ring into 
account. At the stagnation point 𝑧𝑧 = ± 𝑧𝑧0, the axial velocity 𝑢𝑢𝑧𝑧 vanishes for 

1 = −2𝜏𝜏𝛽𝛽2�
𝐽𝐽1(𝑘𝑘𝑛𝑛𝛽𝛽)
𝐽𝐽02(𝑘𝑘𝑛𝑛) 𝐽𝐽0(𝑘𝑘𝑛𝑛) exp�−𝑘𝑘𝑛𝑛

|𝑧𝑧0|
𝑎𝑎
�

∞

𝑛𝑛=1

. (8) 

Equation (8) is implicit for the stagnation point 𝑧𝑧0 = 𝑧𝑧0(𝜏𝜏,𝛽𝛽). Figure 3 shows Stokes stream 
function and the stagnation points at 𝑧𝑧 = ±𝑧𝑧0 for different circulation strengths 𝜏𝜏 of the vortex for 
𝛽𝛽 = 0.8. By increasing the circulation strength 𝜏𝜏 and for constant 𝛽𝛽, the location of the stagnation 
point moves away from the reference cross section where the turbomachine is located. This is due 
to the dominating effect of the velocity induced by the vortex compared to the axial free stream 
velocity. 

 
Figure 3: Contour plots of the stream function (equation (5)) for a vortex ring with the strength 𝜏𝜏 = 0.8 (left), 𝜏𝜏 = 2.5 

(middle), 𝜏𝜏 = 5.0 (right) for 𝛽𝛽 = 0.8. 

THE VORTEX SYSTEM AT HEAVY OVERLOAD 

Figure 4 visualizes the vortex system of an axial turbomachine composed of 𝑍𝑍 = 1 impeller blade at 
heavy overload 𝜑𝜑 → ∞ (𝑍𝑍 = 1 is chosen to improve clarity only). For this limiting case, the flow at 
cross section A-A far downstream of the machine is a plane potential flow. It can be described using 
theory of functions (complex analysis) [22]. Mirrored tip vortices are necessary, to fulfill the 
kinematic boundary condition on the tube wall. These mirrored vortices are located in the housing 
and on the rotational axis of the turbomachine. Considering the tip vortex and its mirrored 
conjugates only, i.e. neglecting the hub vortex as a first step, one obtains the system visualized in 
Figure 4 bottom left. The vortex on the axis and the hub vortex feature identical magnitude but 
opposed rotating direction. Adding the hub vortex, yielding the complete system, hence, results in 
the annulation of these two vortices; see Figure 4 bottom right. 

In the following notation, the complex coordinates 𝜁𝜁 = 𝜉𝜉 + i𝜂𝜂 = 𝑟𝑟 exp(i𝜃𝜃) are composed of a real 
part 𝜉𝜉 = 𝑟𝑟 cos 𝜃𝜃 and an imaginary part 𝜂𝜂 = 𝑟𝑟 sin𝜃𝜃, with i = √−1. The complex potential 𝐹𝐹(𝜉𝜉, 𝜂𝜂) is 
divided into the real part, which is the velocity potential ℜ[𝐹𝐹(𝜉𝜉, 𝜂𝜂)] = Φ(𝜉𝜉, 𝜂𝜂) and the imaginary 
part, which is the stream function ℑ[𝐹𝐹(𝜉𝜉, 𝜂𝜂)] = Ψ(𝜉𝜉, 𝜂𝜂). 𝐹𝐹� is the complex conjugate of 𝐹𝐹. 
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Figure 4: The vortex system of an axial turbomachine at overload, 𝑍𝑍 = 1. 

For the considered potential flow, the tip vortex at radial position 𝑏𝑏 = (1 − 𝑠𝑠)𝑎𝑎 yields the complex 
potential 

𝐹𝐹1(𝜁𝜁) = −
iΓ
2𝜋𝜋

ln(𝜁𝜁 − 𝑏𝑏). (9) 

Here, 𝑠𝑠 is the dimensionless gap. The Milne-Thomson circle theorem [23] is applied, to derive the 
complex potential satisfying the kinematic boundary condition at the wall. This theorem postulates 
a resulting complex potential 

𝐹𝐹2(𝜁𝜁) = 𝐹𝐹1(𝜁𝜁) + 𝐹𝐹�1 �
𝑎𝑎2

𝜁𝜁
� (10) 

for a potential 𝐹𝐹1 and the mirrored potential at the surrounding wall. Adding the potential of the 
mirrored tip vortex on the axis of the turbomachine 𝜁𝜁 = 0, see Figure 4 bottom right, yields for the 
complex flow potential 

𝐹𝐹′(𝜁𝜁) = −
iΓ
2𝜋𝜋

�ln(𝜁𝜁 − 𝑏𝑏) − ln�𝜁𝜁 −
𝑎𝑎2

𝑏𝑏
� + ln 𝜁𝜁� + const. (11) 

The tip vortex at 𝜁𝜁 =  𝑏𝑏 with the circulation Γ necessitates a mirrored vortex at 𝜁𝜁 = 0 with the same 
magnitude of circulation and a mirrored vortex in the housing at 𝜁𝜁 = 𝑎𝑎2/𝑏𝑏 = 𝑎𝑎/(1 − 𝑠𝑠) with the 
same magnitude and inverted direction. Up to now, the hub vortex is excluded from the 
considerations. Considering the hub vortex, as visualized in Figure 4 bottom right, yields for the 
complex potential 

𝐹𝐹(𝜁𝜁) = −
iΓ
2𝜋𝜋

�ln(𝜁𝜁 − 𝑏𝑏) − ln�𝜁𝜁 −
𝑎𝑎2

𝑏𝑏
�� + const. (12) 

In the following, this analysis shows, that an induced movement of the gap vortex occurs against the 
rotating direction of the turbomachine at heavy overload. A potential vortex induces a velocity on 
the surrounding flow. The velocity components of a given potential 𝐹𝐹(𝜁𝜁) are calculated by 
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d𝐹𝐹(𝜁𝜁)
d𝜁𝜁

= 𝑢𝑢ind𝑒𝑒𝜉𝜉 − i𝑣𝑣ind𝑒𝑒𝜂𝜂 . (13) 

A straight vortex filament does not induce a velocity on its own, due to the Biot-Savart law, so the 
induced velocity at 𝜁𝜁 = 𝑏𝑏 is only due to the mirrored tip vortex at 𝜁𝜁 = 𝑎𝑎/(1 − 𝑠𝑠). The resulting 
induced velocity at the position of the tip vortex yields 

𝑢𝑢ind𝑒𝑒𝜉𝜉 − i𝑣𝑣ind𝑒𝑒𝜂𝜂 =
d

d𝜁𝜁
�

iΓ
2𝜋𝜋

ln�𝜁𝜁 −
𝑎𝑎2

𝑏𝑏
��

𝜁𝜁=𝑏𝑏
= −

iΓ
2𝜋𝜋𝑏𝑏

𝑏𝑏2

𝑎𝑎2 − 𝑏𝑏2
𝑒𝑒𝜂𝜂 . (14) 

Assuming a turbomachine with 𝑍𝑍 impeller blades, the rotating velocity of the tip vortex is 

𝑣𝑣ind =
𝑍𝑍Γ

2𝜋𝜋𝑏𝑏
𝑏𝑏2

𝑎𝑎2 − 𝑏𝑏2
=

𝑍𝑍Γ
2𝜋𝜋𝑎𝑎𝑠𝑠

1 − 𝑠𝑠
2 − 𝑠𝑠

= Ω𝑎𝑎
1 − 𝜑𝜑 𝜑𝜑�⁄

𝑠𝑠
(1 − 𝑠𝑠)3

2 − 𝑠𝑠
. (15) 

This is the rotating direction against the rotating direction of the turbomachine. For symmetry 
reasons, the rotating trajectory defines a circular path at radius 𝑏𝑏 = 𝑎𝑎(1 − 𝑠𝑠). Hence, the induced 
frequency at 𝜁𝜁 = 𝑏𝑏 is 

Ωind =
𝑣𝑣ind
𝑏𝑏

=
Ω
s

(1 − 𝑠𝑠)2

2 − 𝑠𝑠
�1 −

𝜑𝜑
𝜑𝜑�
�. (16) 

For high flow number 𝜑𝜑 → 𝜑𝜑� and small gap 𝑠𝑠 ≪ 1, the induced frequency yields 
Ωind
Ω

=
1

2𝑠𝑠
, for 𝜑𝜑 → 𝜑𝜑�  (17) 

against the rotating direction of the turbomachine. 

APPLICATION FOR ACOUSTICAL INVESTIGATIONS 

 
Figure 5: Frequency spectra of the tip clearance noise depending on the flow number 𝜑𝜑 [4]. 

Previous investigations by Karstadt et al. [4] analysed the tip clearance noise in axial 
turbomachines. Figure 5 shows the frequency spectra over the complete operating range. 
Remarkable are the peaks at 42 Hz and 375 Hz, which correspond to the rotational speed 𝜋𝜋 and the 
blade passing frequency 𝑍𝑍𝜋𝜋. Fukano and Yang [17] show, that the circumferential frequency of the 
tip clearance noise shifts to lower values with increasing tip clearance 𝑠𝑠 and decreasing flow 
number 𝜑𝜑 due to the larger extent of the gap vortex. The present paper investigates the frequency of 
the tip clearance noise depending on the operating point applying analytical methods. At heavy part 
load, equation (2) indicates that an induced frequency at half the rotation speed of the turbomachine 
should appear. This frequency was also observed by Karstadt et al.[4] as Figure 5 shows a high 
intensity in the region of 20 Hz. Equation (17) indicates, that for heavy overload, the induced 
frequency will increase with decreasing tip clearance. Furthermore, we expect a noise of high 
frequency due to the small value of 𝑠𝑠 < 1 %, which is common for turbomachines. The broadband 
drop in the sound power for all flow numbers is clearly visible. 
Müller [24] applied the continuity and the momentum equation and deduced, that sound inside a 
fluid volume is only emitted, if the rotation of the velocity field changes in time. The present study 
applies a similar approach to analyse the tip clearance noise of a turbomachine. Time-consuming 
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simulations, as performed by Carolus et al. [25] surely allow a more profound and accurate insight 
into the acoustics of turbomachines. The development of an analytical model, which predicts main 
frequencies, is yet interesting to generate a deeper understanding of the acoustics in turbomachines. 
These findings and the presented analytical model in this paper could be an efficient tool for 
acoustic design of turbomachines. 

SUMMARY AND CONCLUSION 

An interplay between dynamic and kinematic effects explains flow structures and phenomena. 
Using computational fluid dynamics, a clear distinction of both effects is often impossible. In 
contrast, analytical methods allow a more focused picture of fluid mechanics, i.e. they allow a clear 
distinction of effects. Of course, only generic flows are accessible to analytical methods. 
This paper focused on an analytic model for wall stall, so far being explained by dynamics only: 
boundary layer separation is indeed a dynamic effect. Nevertheless boundary layer separation is not 
necessarily the only reason for wall stall. It is shown, that kinematics may also explain at least some 
effects of wall and rotating stall. The used picture for a flow at small flow numbers is a thread 
spool, rolling up the tip vortices resulting from rotating bound vortices. From the fluid mechanics 
perspective, the thread spool is a coaxial vortex ring of increasing strength connected to a semi-
infinite hub vortex (Figure 1). 
So far, the velocity potential of a coaxial vortex ring inside a tube was unknown. The solution of 
Laplace's equation results in the velocity potential for the vortex filament within a tube [10]; see 
equation (4). 
This paper gained three main results, which are due to kinematics only. First, at part load operation, 
the hub vortex induces a sub-synchronous rotation of the vortex ring. The derived rotational speed 
Ωind = 0.5 Ω of the vortex ring is surprisingly consistent with observed sub-synchronous speeds of 
rotating stall; cf. [11]. Second, the vortex ring induces an upstream axial velocity at the wall. 
Together with the undisturbed flow velocity, this results in a stagnation point upstream and 
downstream at the wall, which may be interpreted as "wall stall" (Figure 3). Third, at overload 
operation, the induced rotational direction is inverted to the case at part load. The semi-infinite 
straight vortex filament at the outer blade end rotates against the rotating direction of the 
turbomachine, due to the induction of the hub vortex. The induced frequency yields Ωind =
−0.5 Ω/𝑠𝑠. 
The presented analytical model may give new arguments and improves the understanding of the 
vortex system in turbomachines, but is also intended to motivate generic experiments. Hence, a test 
rig will validate the models presented in this paper in the near future. 
As a next step, the velocity potential for a coaxial vortex ring filament in a circular tube (equation 
(4)) will be extended to a coaxial vortex layer, yielding a transient behavior of the vortex system. 
This behavior leads to a change in the circulation over time being responsible for noise emission 
[24]. 
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NOMENCLATURE 

Quantity Description Dimension 

𝑎𝑎 tube radius 𝐿𝐿 

𝑏𝑏 blade tip radius 𝐿𝐿 

𝐹𝐹 complex potential 𝐿𝐿2𝑇𝑇−1 

Δℎ𝑡𝑡 total enthalpy 
difference 

𝐿𝐿2𝑇𝑇−2 

i imaginary number - 

𝐽𝐽𝑛𝑛 Bessel function of 
order 𝜋𝜋 

- 

𝑘𝑘𝑛𝑛 𝜋𝜋-th zero of Bessel 
function 𝐽𝐽1 

- 

�̇�𝑚 mass flux 𝑀𝑀𝑇𝑇−1 

𝑀𝑀 torque 𝑀𝑀𝐿𝐿2𝑇𝑇−2 

𝜋𝜋 rotational speed 𝑇𝑇−1 

𝑃𝑃 power 𝑀𝑀𝐿𝐿2𝑇𝑇−3 

𝑟𝑟 radial coordinate 𝐿𝐿 

𝑠𝑠 tip clearance 𝐿𝐿 

𝑢𝑢, 𝑣𝑣 velocity  𝐿𝐿𝑇𝑇−1 

𝑢𝑢ind, 𝑣𝑣ind induced velocity  𝐿𝐿𝑇𝑇−1 

𝑈𝑈 free-stream velocity 𝐿𝐿𝑇𝑇−1 

𝑧𝑧 axial coordinate 𝐿𝐿 

𝑧𝑧0 wall stall location 𝐿𝐿 

𝑍𝑍 blade number - 
 

Quantity Description Dimension 

𝛽𝛽 dimensionless 
vortex ring radius 

- 

𝛽𝛽2 trailing edge angle - 

Γ vortex strength 𝐿𝐿2𝑇𝑇−1 

Γ𝑡𝑡 time-dependent 
vortex strength 

𝐿𝐿2𝑇𝑇−1 

𝜁𝜁 complex coordinate 𝐿𝐿 

𝜉𝜉 real part of complex 
coordinate 𝜁𝜁 

𝐿𝐿 

𝜂𝜂 imaginary part of 
complex coordinate 
𝜁𝜁 

𝐿𝐿 

𝜃𝜃 argument of 
complex number 𝜁𝜁 

- 

𝜏𝜏 dimensionless 
vortex strength 

- 

𝜑𝜑 flow number - 

𝜑𝜑opt optimal flow 
number 

- 

𝜑𝜑�  maximum flow 
number 

- 

𝜙𝜙 dimensionless 
velocity potential 

- 

Φ  velocity potential 𝐿𝐿2𝑇𝑇−1 

𝜕𝜕 dimensionless 
stream function 

- 

Ψ Stokes stream 
function 

𝐿𝐿3𝑇𝑇−1 

Ω frequency 𝑇𝑇−1 

Ωind induced frequency 𝑇𝑇−1 
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