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SUMMARY 

By considering not only single components, but also their interplay, the overall energy 

efficiency of a ventilation system can be considerably improved. A design method from this 

system point of view, the method TOR ("Technical Operations Research"), is presented in this 

work. With TOR, we can algorithmically search and evaluate the energy efficiency of all 

possible system layouts of different fans, and find the global optimal system design. Therefore, 

we employ mathematical methods from the field of discrete optimization. We show the 

possibilities of this systematic design approach, and design a ventilation system for buildings 

that is energy efficient and resilient.  

 

INTRODUCTION 

Currently, ventilation systems in buildings are often designed manually and the selection of 

components and the system layout depend on the designer’s experience. If three different system 

designers get the same design task, the resulting system configurations will most likely vary, 

meaning that at least one of them cannot be optimal. To find the provably global optimal system 

topology, a systematic approach that allows to assess all possible system layouts is needed. 

Moreover, designers of ventilation systems often only consider the maximum ‘worst-case’ loading 

condition. However, this maximum load case has only to be fulfilled in a very short period of the 

actual usage time.  

It was shown in [1] that it is often possible to improve the overall energy efficiency of a system by 

taking more possible design choices into account, especially if the system also runs in partial load. 

To systematically model and optimize technical systems, the method TOR ("Technical Operations 

Research") [2] was developed at the chair of fluid systems at TU Darmstadt.  
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This method uses mathematical optimization techniques to build energy efficient technical systems 

with the help of algorithms. The method TOR bases on seven steps which are shown in Figure 1: 

 

 

In the first step, the function of the system to be planned has to be determined. This function is 

given by the load requirements the system will have to fulfill. In our approach, we not only consider 

the ‘worst-case’ load condition, but a load profile of different load scenarios and their respective 

frequency.  

In the second step of the TOR pyramid, the goal of the optimization is specified. This goal is 

subjective and can even be multi-criterial. In our case, we want to find the ventilation system with 

the lowest power consumption and still guarantee system resilience. In the underlying mathematical 

optimization program, this goal corresponds to the objective function that is either maximized or 

minimized.  

In the third step, the playing field of the optimization has to be specified, i.e., the degrees of 

freedom of the optimization. In this step, a construction kit of fans is specified, out of which the 

optimization algorithm can choose and build an optimal system topology. If we want to find the 

global optimal solution given a specific construction kit, it is mandatory to specify the entirety of all 

possible choices.  

The computation of the most efficient system is done in step four. All potential layouts have already 

been integrated in the model and in this step a mathematical optimization algorithm is used to 

retrieve the most promising choice.  

In step five this optimal solution is verified by using 0D-models and simulation environments like 

Modelica [3]. A key element of evolving new systems is the validation step. In this step, the optimal 

solution is validated with experimental data derived from test rigs. In the final step, the optimal 

layout is built, if the solution passes the validation.  

 

 

Figure 1: The TOR pyramid [2]. 



FAN 2018   3 
Darmstadt (Germany), 18 – 20 April 2018 

FUNDAMENTALS OF RESILIENCE 

Next to the energy efficiency, the overall system availability is often a key factor when assessing 

different layout choices. Therefore, we also consider the resilience of the derived system. In this 

section, we develop the fundamentals to understand resilience in technical systems.  

The concept of resilience was first used in psychology [4]. Nevertheless, it is also very promising to 

transfer this concept to engineering. In general, resilience in the engineering domain describes the 

possibility of a technical system to withstand temporary severe failures and recover from theses 

failures [5]. Further, in comparison to robust systems, resilient systems allow a minimal function in 

the case of an occurring malfunction in one or more parts of the whole system. Robust systems on 

the other side withstand several predefined input variations, e.g. different loads on a mechanical 

structure [6]. In the case of a malfunction of one part, they usually cannot guarantee a minimal 

function.  

Two questions are important for understanding the development of resilient systems. The first is 

which possibilities do exist to enhance the resilience. The second is how to measure the resilience 

of a technical system. In general, there exist different ways to improve a system’s resilience. One 

possibility is the usage of redundant components. Additionally, a technical system which is able to 

detect failures and react has a higher possibility to withstand these failures. This ability of changing 

the internal state is another, more high level manifestation of a system’s resilience. However, the 

considerations about enhancing a system’s resilience are only valuable, if it is possible to measure 

resilience. One possibility for a resilience measure is the k-reliability of a technical system. If a 

system is k-reliable, it guarantees a predefined minimum function despite the failure of k arbitrary 

components.  

VENTILATION SYSTEM 

The ventilation system in this paper is based on the work of Schänzle et al. [2]. We consider a 

ventilation system for cooling in an office with two bureaus and one conference room. The calculus 

of the relevant pressure and volume flow is conducted with VDI 2078 [7]. Consistent to [2] we use 

three load profiles in this paper to fulfill the requirements of a cooling system for an office with 

bureaus and one conference room. They are shown in Table 1.  

 

Table 1: Load profiles of two load scenarios. 

Scenario 

𝑺𝒄 

Time portion 

𝝉𝒔𝒄 

Pressure [Pa] 

𝚫𝒑𝒔𝒄
𝑺𝒄 

Volume flow [m³/h] 

�̇�𝒔𝒄
𝐒𝐜 

1 55 % 150 6200 

2 30 % 175 9300 

3 15 % 200 12400 

 

While defining the function of the system by these load scenarios is the first step of the TOR 

method, the next step is to specify the playing field. In this application example, we want to make 

sure that the load cases can be fulfilled by using more than one fan, and consider all parallel 

connections that can be built by a given construction kit of fans.  

For modelling a high variety of different fans within our construction kit, we use a dimensionless 

representation of a series of fans and derive the characteristic curves of the individual fans of this 

series by scaling laws. Therefore, we use the dimensionless coefficients for pressure (𝜓), efficiency 
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(𝜂) and power (𝜆). They are all highly non-linear functions of the dimensionless flow coefficient 

(𝜑).  The definitions of Equation (1) to (4) are used in this paper (cf. [8]). 

 

Δ𝑝 =  
𝜋2

2
𝜓𝜌𝑛2𝑑2 

(1) 

�̇� =  
𝜋2

4
𝜑𝑛𝑑3 

(2) 

𝑃 =  
𝜋4

8
𝜆𝜌𝑛3𝑑5 

(3) 

𝜆 =  
𝜓𝜑

𝜂
 

(4) 

 

The best efficiency point is scaled up by formula (5) (cf. [2]) and used in the playing field. 

Δη =  
1

5
(1 − 𝜂m)

Δ𝑅𝑒

𝑅𝑒m
 

(5) 

Here 𝑅𝑒𝑚 and 𝜂𝑚 describe the Reynolds number and the efficiency of the model system. The model 

describes the fan, which was measured on a test rig and used as a basis for the considered series. 

 

MATHEMATICAL OPTIMIZATION 

In this work, we use mathematical optimization to derive the global optimal solution 

algorithmically. In this Section, we give the necessary mathematical basics. 

Each optimization program consists of a set of variables, and an objective function. While the 

variables represent unknown quantities, the objective function defines the goal of the optimization. 

In constrained optimization programs, the variables of the optimization program are additionally 

restricted to a set of feasible values by constraints that have to be satisfied. In our case, these 

constraints are given by linear and non-linear functions and model the playing field of our 

optimization. The goal of the optimization is to find feasible values for the variables that i) satisfy 

all constraints and ii) minimize or maximize the objective function. 

In this paper, we want to optimize the ventilation system regarding two goals. The first one is the 

energy efficiency of the system. The second one is to enhance the resilience of the whole system. 

We therefore have a multi-objective optimization task. Since Equations (1) – (5) are non-linear 

functions, we use a non-linear approach to model our system. Another approach would be to 

piecewise linearize the non-linear equations and use algorithms from the field of linear 

optimization. However, [9] shows that in the case of highly non-linear functions, non-linear 

modeling combined with non-linear optimization has benefits in comparison to piecewise linear 

models and linear optimization regarding the solving time. 

The resulting optimization program is a Mixed-Integer Non-Linear Program (MINLP). An example 

for a MINLP is shown in Equation (6). 

minimize 𝑓(�⃗�) 

subject to  𝑔𝑖(�⃗�) = 0, 𝑖 ∈  ℤ 

�⃗� ≥ 0 

�⃗� ∈ {ℝ, ℤ} 

(6) 
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In this case, the objective function 𝑓(�⃗�) is minimized. Without loss of generality, the constraints 

can be described by 𝑔𝑖(�⃗�) = 0, since inequality restrictions can be transformed into equality 

restrictions with the help of additional variables. The decision variables �⃗� consist of continuous and 

integer variables and are conventionally defined as positive values. The integer variables describe 

discrete decisions, like the possibility to buy a number of specific fans or not. The continuous 

variables are used to model the physical behavior of the system. Continuous variables are for 

example the pressure (Δ𝑝), the volume flow (�̇�), or the power consumption (𝑃). In general, non-

linear programs, like shown in Equation (6), are non-convex. This means, that they have multiple 

local minima and it is very challenging to find the global minimum. In this paper, we use SCIP [10] 

to solve the underlying non-linear model. SCIP is a solver designed especially to solve non-convex 

non-linear mixed-integer optimization programs. We model our optimization problem in Python 

and use PySCIPOpt [11] to call SCIP from Python. In the next section, we describe the underlying 

mathematical model to build an optimized fan system for cooling an office building 

 

OPTIMIZATION MODEL 

As mentioned earlier, the model consists of different continuous and integer variables. These 

variables define the basis of the following optimization. Therefore, all variables and their respective 

domain are explained in Table 2.  

 

Table 2: Variables of the underlying MINLP. 

Variable Description Domain Unit 

𝑃 Power ℝ+ W 

𝜆 Dimensionless power 

coefficient 
[0.1,0.5] ─ 

𝜑 Dimensionless flow 

coefficient 
[0.1,1] ─ 

𝜂 Dimensionless efficiency 

coefficient 
[0,1] ─ 

𝜂ref Scaled efficiency [0,1] ─ 

𝜂norm Normalized efficiency of 

the model 
[0,1] ─ 

𝑛 Rotational speed [3, 35] 1/s 

 

The variables can assume different values in each load case and for each fan in the predefined 

construction kit. These values are set by the optimization algorithm. The best feasible value 

configuration represents the global optimal solution which corresponds to the system layout and 

control. Next to these variables, constant parameters are also defined in the model. Primarily the 

required volume flow and pressure in the fan system which are specified in the predefined load 

cases in Table 1. Next to these values, we use a model fan as the basis of the computation. 

Therefore, we use the model parameters 𝜂𝑚, 𝑛𝑚 and 𝑑𝑚 to describe the efficiency, rotational speed 

and diameter of the model respectively. For the computation we further need the air density 𝜌. 
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Table 3: Constants. 

Constant Description Value Unit 

�̇� Volume flow cf. Table 1 m³/s 

Δ𝑝 Pressure cf. Table 1 Pa 

𝜂m Efficiency of the model 

fan 

0.74 ─ 

𝑛m Rotational speed of the 

model fan 

20.0 1/s 

𝑑m Diameter of the model 

fan 

0.63 m 

𝜌 Air density 1.2041 kg/m³ 

 

Equations (1) – (4) are highly non-linear. For example, in Equation (3), the diameter of each fan has 

the power five. These highly non-linear equations can be transformed to enable a faster solving 

process: The choice of fan diameters is modeled as a set of 𝑁 discrete values, and the different 

diameters are activated with binary variables. Like this, one fan with different diameters is 

represented by 𝑁 equations (one for each possible diameter) in which the diameter is transformed 

into a constant. With this model improvement, it is possible to define and solve a Mixed-Integer 

Non-Linear Program, and to optimize the energy-efficiency and resilience of the whole system.  

Figure 2 shows the construction kit of the optimization. Four different diameters are considered in 

the optimization model. The playing field consists of two fans of each size to enable a redundant 

usage of different fans. Overall, this results in a playing field of eight fans in total. With this playing 

field, it is e.g. possible to choose only one fan as well as up to eight parallel fans to fulfill the load 

cases of Table 1.  

 

 

 

Figure 2: Used fan diameters. 

 

  

 

d = 0.25 m

d = 0.50 m

d = 0.75 m

d = 1.00 m



FAN 2018   7 
Darmstadt (Germany), 18 – 20 April 2018 

As mentioned earlier, we use the characteristic curves of a model fan and use the relationship of 

Equation (1) - (4) to compute the dimensionless coefficients. We derive two curves to describe a 

product line of this fan. The first one is the normalized efficiency 𝜂norm as a function of 𝜑, the 

second one is the dimensionless power coefficient 𝜆 as a function of 𝜑. We use a quadratic least-

square fit to model 𝜂normas a function of 𝜑. 

𝜂norm = 𝛼1(𝜑 − 𝜑max)2 + 1 (7) 

In Equation (7) the efficiency curve is equivalent to a parabola with a negative factor 𝛼1. The 

maximum value 𝜂norm(𝜑) = 1 is reached at the value 𝜑max. Next to this, we use a cubic least-

square fit for the power coefficient 𝜆, cf. Equation (8). 

𝜆 = 𝛼2𝜑3 +  𝛼3𝜑2 + 𝛼4𝜑 +   𝛼5 (8) 

In this equation, only the first coefficient 𝛼2 is negative. All other coefficients are positive. The 

model approximates the values for 𝜆 in the range between 0.1 and 0.5. 

In addition to these equations, binary variables are used to model the decisions to use a specific fan 

in a given load scenario. The whole optimization model, which is used to develop a system with 

multiple fans, is shown in Equation (9.1) to (9.14). The objective (cf. Equation (6)) has an important 

role in optimization programs, since it defines the goal of the designer. In our case, we want to 

minimize the sum of the power consumption of all fans in the system. 𝑆𝑐 represents the set of all 

load scenarios. 𝒱 is the set of all possible fans. It applies for all Equations ∀𝑣 ∈ 𝒱, ∀𝑠𝑐 ∈ 𝑆𝑐, if not 

stated otherwise. While Equations (9.1) – (9.14) represent a mathematical model which is used to 

find the most energy efficient system structure, we can also add additional constraints in order to 

aim for an energy efficient and resilient system. These additional constraints are shown in Equation 

(10.1) – (10.17). The modified objective is shown in Equation (11). It is used instead of the 

objective (9.1). To enable valid solutions, we use an additional continuous variable 𝑍 to allow a 

lower volume flow as desired. This difference between the total possible volume flow in case of a 

malfunction and the desired volume flow of Table 1 is minimized in the modified objective. The 

index R describes additional variables for the resilience computations. 

 

Minimize ∑ ∑ 𝜏𝑠𝑐𝑃𝑣,𝑠𝑐𝑠𝑐∈𝑆𝑐𝑣∈𝒱  (9.1) 

subject to  

Δ𝑝𝑣,𝑠𝑐 − Δ𝑝𝑠𝑐
Sc ≤ (1 − 𝑘𝑣,𝑠𝑐)𝑝max  (9.2) 

Δ𝑝𝑣,𝑠𝑐 − Δ𝑝𝑠𝑐
Sc ≥ −(1 − 𝑘𝑣,𝑠𝑐)𝑝max  (9.3) 

Δ𝑝𝑣,𝑠𝑐 ≤ 𝑘𝑣,𝑠𝑐𝑝max  (9.4) 

𝜑𝑣,𝑠𝑐 ≥ 0.1𝑘𝑣,𝑠𝑐  (9.5) 

�̇�𝑣,𝑠𝑐 ≤  �̇�max𝑘𝑣,𝑠𝑐  (9.6) 

∑ �̇�𝑣,𝑠𝑐 =  �̇�𝑠𝑐
Sc ∀ 𝑠𝑐 ∈ 𝑆𝑐

𝑣∈𝒱

 
(9.7) 

𝑃𝑣,𝑠𝑐 =  
𝜋4

8
𝜆𝑣,𝑠𝑐𝜌𝑛𝑣,𝑠𝑐

3 𝑑𝑣
5  

(9.8) 

�̇�𝑣,𝑠𝑐 =  
𝜋2

4
𝜑𝑣,𝑠𝑐𝑛𝑣,𝑠𝑐𝑑𝑣

3  
(9.9) 

Δ𝑝𝑣,𝑠𝑐𝜑𝑣,𝑠𝑐 =  
𝜋2

2
𝜆𝑣,𝑠𝑐𝜂𝑣,𝑠𝑐𝜌𝑛𝑣,𝑠𝑐

2 𝑑𝑣
2  (9.10) 
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𝜂𝑣,𝑠𝑐
ref = 𝜂m +  

1

5
(1 − 𝜂m) (

𝑛𝑣,𝑠𝑐𝑑𝑣
2

𝑛m𝑑m
2

− 1 ) 
(9.11) 

𝜂𝑣,𝑠𝑐 = 𝜂𝑣,𝑠𝑐
norm𝜂𝑣,𝑠𝑐

ref   (9.12) 

𝜂𝑣,𝑠𝑐
norm = 𝛼1(𝜑𝑣,𝑠𝑐 − 𝜑max)2 + 1  (9.13) 

𝜆𝑣,𝑠𝑐 =  𝛼2𝜑𝑣,𝑠𝑐
3 +  𝛼3𝜑𝑣,𝑠𝑐

2 + 𝛼3𝜑𝑣,𝑠𝑐 + 𝛼4  (9.14) 

 

Δ𝑝𝑣,𝑠𝑐
R − Δ𝑝𝑠𝑐

Sc ≤ (1 − 𝑘𝑣,𝑠𝑐
R )𝑝max  (10.1) 

Δ𝑝𝑣,𝑠𝑐
R − Δ𝑝𝑠𝑐

Sc ≥ −(1 − 𝑘𝑣,𝑠𝑐
R )𝑝max  (10.2) 

𝜑𝑣,𝑠𝑐
R ≥ 0.1 𝑘𝑣,𝑠𝑐

R   (10.3) 

�̇�𝑣,𝑠𝑐
R ≤  �̇�max𝑘𝑣,𝑠𝑐

R   (10.4) 

∑ �̇�𝑣,𝑠𝑐
R +  𝜖𝑣,𝑠𝑐

R =  �̇�𝑠𝑐
Sc ∀ 𝑠𝑐 ∈ 𝑆𝑐

𝑣∈𝒱

 
(10.5) 

𝑃𝑣,𝑠𝑐
R =  

𝜋4

8
𝜆𝑣,𝑠𝑐

R 𝜌𝑛R
𝑣,𝑠𝑐
3

𝑑𝑣
5 

(10.6) 

�̇�𝑣,𝑠𝑐
R =  

𝜋2

4
𝜑𝑣,𝑠𝑐

R 𝑛R
𝑣,𝑠𝑐𝑑𝑣

3 ∀ 
(10.7) 

Δ𝑝𝑣,𝑠𝑐
R 𝜑𝑣,𝑠𝑐

R =  
𝜋2

2
 𝜆𝑣,𝑠𝑐

R 𝜂𝑣,𝑠𝑐𝜌𝑛R
𝑣,𝑠𝑐
2

 𝑑𝑣
2  (10.8) 

𝜂𝑣,𝑠𝑐
R,ref = 𝜂m + 

1

5
(1 − 𝜂m) (

𝑛R
𝑣,𝑠𝑐𝑑𝑣

2

𝑛m𝑑m
2 − 1 ) 

(10.9) 

𝜂𝑣,𝑠𝑐
R = 𝜂𝑣,𝑠𝑐

R,norm𝜂v,sc
R,ref  (10.10) 

𝜂𝑣,𝑠𝑐
R,norm = 𝛼1(𝜑𝑣,𝑠𝑐

R − 𝜑max)2 + 1  (10.11) 

𝜆𝑣,𝑠𝑐
R =  𝛼2𝜑𝑣,𝑠𝑐

R 3
+  𝛼3𝜑𝑣,𝑠𝑐

R 2
+ 𝛼3𝜑𝑣,𝑠𝑐

R +   𝛼4  (10.12) 

𝑘𝑣,𝑠𝑐
R ≤  𝑘𝑣

buy
  (10.13) 

𝑘𝑣
buy

≥ 𝑘𝑣,𝑠𝑐  (10.14) 

∑ 𝑘𝑣,𝑠𝑐
R ≤  ∑ 𝑘𝑣

buy

𝑣∈𝒱

− 1

𝑣∈𝒱

 
(10.15) 

𝜖𝑣,𝑠𝑐
R ≤ 𝑍  (10.16) 

𝜖𝑣,𝑠𝑐
R ≤ 5𝑘𝑣

buy
  (10.17) 

 

Minimize (∑ ∑ 𝜏𝑠𝑐𝑃v,sc + 𝛽1𝑃v,sc
R  𝑠𝑐∈𝑆𝑐𝑣∈𝒱 )𝛽2 + 𝑍 (11) 
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RESULTS 

In this Section, we present the results of our design approach. First, we will present results for the 

computation of an energy efficient system. Afterwards we will present the results if we also 

consider the resilience of the system.  

 

Figure 3: Optimized energy efficient design. 

The model for the energy optimization, which is given by Equation (9.1) – (9.14), can be solved by 

SCIP (cf. [10]) within a few minutes on a standard computer, if we allow a mathematical 

optimization gap of 5 %. This means, that the solution found is at maximum 5 % away from the 

global optimal solution. 

The result of the energy optimization is shown in Figure 3, detailed values for the single load 

scenarios are given in Table 5. The optimal system found with TOR consists of two parallel fans 

with different diameters. The overall power consumption of the optimized system in all loading 

cases given their respective frequency amounts to 537 W. Compared to 612 W of the conventional 

system, it is possible to increase the efficiency by round about 12 % by the usage of multiple fans. 

 

Table 4: Results of the efficiency optimization. 

Loadcase Fan number Fan diameter  

[m] 

Rotational speed  

[rpm] 

Power 

[W] 

1 1 0.50 1347 357 

2 2 0.75 816 667 

3 2 0.75 924 937 

  

To get a more resilient system, in a second step, we add the additional constraints (10.1) - (10.17) 

and use the modified objective (11) instead of Equation (9.1). With this extension, the computation 

of the optimal system is more complex. Therefore, we have to reduce the number of load cases and 

only consider the first two load scenarios of Table 1. From the optimization, we get multiple 

solutions that are at least 5 % away from the global optimum and have the same k-reliability. One 

solution is the same combination as shown before in Table 5: One fan with d = 0.5 m and one fan 

with d = 0.75 m. In the case of a malfunction of one fan, the other fan replaces this malfunctioning 

fan in all load scenarios.  

Next to this solution, it is also possible to use either fan 1 or fan 2 of Table 4 two times. Again, all 

scenarios are met by one fan in the case of a failure of the other one. While all solutions have the 

 

- 12 %

CONVENTIONAL SYSTEM OPTIMIZED SYSTEM

P = 612 W 

d = 0.75 m 

 

P = 537 W 

d1 = 0.50 m 

d2 = 0.75 m 
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same k-reliability, the solution of two fans of diameter d = 0.5 m is the most energy efficient, given 

the first two scenarios of Table 1. During normal usage, it is possible to improve the overall energy 

efficiency by using both fans. This is shown in Table 5. In the first load scenario, only one fan is 

used. In scenario two, both fans are used. In comparison, using only one fan in this load case would 

increase the power consumption by 7.2 %.  

Table 5: Results of the optimization of resilience. 

Loadcase Fan Number Rotational speed 

[rpm] 

Power 

[W] 

1 1 1347 357 

2 1 and 2 1245; 1245 311, 311 

 

CONCLUSION 

We presented a method to model technical systems and to find optimal topologies regarding energy 

efficiency and resilience. Therefore, we described a mixed-integer non-linear program to develop a 

fan system. This model considers, next to the energy efficiency, explicitly the resilience of the 

underlying ventilation system. The result is a more resilient system with a k-reliability of 1. Further, 

we showed that especially when considering multiple instead of one single load scenario, the 

optimal topology found by our method has considerably higher energy efficiency than a standard 

layout with one single fan. 

As next steps, we want to improve the underlying optimization algorithms and mathematical 

modelling strategies. Our goal is to increase the playing field of the optimization algorithm (i.e. add 

further fans and dampers), while still maintaining a reasonable solution time, since the usage of 

more load scenarios and more discrete fans can lead to even higher energy savings.  

Additionally we will improve the modelling of resilient systems. While first steps show a promising 

path to model and design resilient systems, we want to add more load scenarios and more fans in 

the future. 
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ANNEX 

 

Table 6: Model parameters. 

Parameter Value 

𝜑max 0.23637 

𝛼1 -28.32336 

𝛼2 -1.70799 

𝛼3 0.20117 

𝛼4 0.0444908 

𝛼5 0.0718617 

𝛽1 0.1 

𝛽2 0.00126994 

 


