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SUMMARY 

Due to increasing energy cost and the challenges in the context of climate change there 

is a permanent demand to enhance the energy efficiency of fans. This paper discusses 

the theoretical aerodynamic efficiency limit that cannot be exceeded regardless of the 

effort made to optimize the fan. It is distinguished between two efficiency definitions 

(total-to-total and total-to-static) and four fan types (axial rotor-only, axial with guide 

vanes, radial rotor-only and radial with volute). For each fan type, the inevitable 

aerodynamic losses are estimated as a function of the design point and the Reynolds 

number. Inevitable losses are e.g. friction losses, shock losses and exit losses. Aiming at 

the insuperable efficiency limit, the models to estimate the friction losses are based on a 

set of idealizing assumptions and the exit losses are minimized by an optimal spanwise 

load distribution. Since the focus is on the aerodynamic efficiency limit, losses in the 

motor and the drive drain are neglected. 

The resulting efficiencies are depicted assuming an exemplary Reynolds number of one 

million. It is found that the impact of the design point is very strong, especially with 

regard to the exit losses which increase with decreasing specific fan speed and diameter. 

Friction losses become relevant at design points with high pressure coefficients. At such 

design points, the width of radial impellers becomes very small and axial fans feature 

large hub-to-tip ratios wherefore the wall effects from hub and shroud increase. The 

efficiency of radial fans is further impaired by increased friction between the bottom 

disc and shroud with the surrounding air. 
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INTRODUCTION 

High energy efficiency has always been a major concern in fan design. In classic design methods, 

the pursuit of high efficiency is mainly based on empirical knowledge, see e.g. Pfleiderer [1, 2] or 

Bommes [3] for radial fans. Due to increased computational capacities, the flow field analysis by 

means of Computational Fluid Dynamics (CFD) has gained importance in the last decades and 

proved to be an adequate tool to overcome the restriction to empirical knowledge. Today, CFD is 

often coupled with optimization algorithms that indentify the optimal geometrical parameters for a 

given aerodynamic objective function. The efficiency that can be achieved with CFD-based 

optimization strongly depends on the parameterization of the fan geometry and the quality of the 

CFD model. Generally, it is not possible to estimate how much potential for further improvement 

was unexploited due to limiting the optimization problem to a specific geometrical parameter space. 

Pre-knowledge about the theoretical efficiency limit would hence be of great value. Previous work 

on efficiency limits of axial rotor-only fans was e.g. performed by van Backström et al. [4] and in 

an earlier study of the authors of this paper [5]. 

The present study also discusses the efficiency limit, but is more universal as it takes four distinct 

fan types into account: axial rotor-only, axial with guide vanes, radial rotor-only and radial with 

volute. Moreover, the efficiency limit is treated as a function of Reynolds number and design point. 

Definitions of Reynolds number, design point and efficiency are provided and discussed below. 

The Reynolds number is defined with the fan diameter D, the tip speed u and the kinematic 

viscosity of the working fluid (mostly air) : 
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N is the rotational speed. The design point is characterized by the flow rate Q and the total-to-total 

pressure rise ptt = pt2 - pt1 where the index "t" means total and the indices "1" and "2" refer to 

positions upstream and downstream of the impeller, respectively. For the sake of universality, the 

design point should rather be defined in a non-dimensional way. There are two common ways to 

define the non-dimensional design point. One way is to non-dimensionalize the flow rate Q and the 

total-to-total pressure rise ptt with the fan diameter, the fan speed and the fluid density  yielding 

the flow coefficient  and the total-to-total pressure coefficient tt, respectively. The product of 

both coefficients yields the power coefficient : 
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Alternatively, the fan speed and the fan diameter can be non-dimensionalized with the 

aerodynamic quantities Q and ptt yielding the specific fan speed  and the specific fan diameter , 

respectively: 
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Both definitions of the non-dimensional design point are relevant in this work.  and tt are used to 

estimate the inevitable losses and hence the maximum possible efficiency as a function of the 

design point. The results, however, are depicted in - diagrams to be comparable to the 

fundamental work by Cordier in the 1950s [6]. 
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The efficiency is defined as the quotient of the flow power and the shaft power: 
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Tshaft is the torque of the driving shaft. Eq. (7) is general in the sense that no index is applied to the 

efficiency  and the pressure rise p. Two distinctions are common in praxis. Firstly, the pressure 

rise can be defined as the difference between the static pressure downstream of the fan p2 and the 

total pressure upstream of the fan pt1 yielding the total-to-static pressure rise pts and the total-to-

static efficiency ts. In this definition, the dynamic pressure downstream of the fan pdyn2 is regarded 

as a loss which is a useful assumption for fans that exhaust into the free environment. In other 

installations, however, pdyn2 is relevant and needs to be considered in the computation of the 

efficiency. This generally represents a challenge as the determination of pdyn2 requires knowledge 

about the velocity field downstream of the fan including the swirl velocity and all local non-

uniformities. The international standard ISO 5801 [7] suggests a simplified method to calculate the 

total-to-total pressure which only uses the area-averaged meridional velocity to compute the 

dynamic pressure, but neglects the swirl and the non-uniformity of the flow field: 
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Pressures and efficiencies computed in that way are called "pseudo" in this paper and indicated with 

the superscript "
*
" to distinguish them from the physically correct total-to-total pressure and 

efficiency which also take into account the swirl velocity and the non-uniformity of the flow field. 

The exit areas A2 are defined according to eq. (9): 
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b2 is the distance between the bottom disc and the shroud at the outlet of a radial impeller. 

 

METHODOLOGY 

General concept 

Inevitable losses occur due to internal friction (index "if "), external friction (index "ef ") and 

Carnot-diffuser type shock losses (index "s"). While internal friction is a general phenomenon of all 

fan types, external friction is only relevant for radial fans where the rotating bottom disc and shroud 

interact with the surrounding air. Shock losses are only relevant for the transition from the exit of a 

radial impeller to the volute. A partial efficiency is defined for each of the three loss mechanisms 

and the product of all partial efficiencies yields the total-to-total efficiency: 

 tt if ef s       (10) 

The volumetric efficiency was neglected since it is assumed that all gaps are sealed in optimal fans. 

Next, the exit losses need to be considered. To this end, the degree of reaction 
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is introduced.dyn,2 is the pressure coefficient associated with the dynamic pressure in the exit plane 

and dyn,2 is the corresponding power coefficient. The product of the degree of reaction and the 

total-to-total efficiency eventually yields the desired values of ts and *

tt : 

 , * *

ts tt ts tt tt ttR R        (13, 14) 

In the following, equations to calculate the partial efficiencies and the degree of reaction as a 

function of the design point and the Reynolds number are derived. The derivations are based on a 

set of idealizing assumptions wherefore the resulting efficiencies can be regarded as an upper limit 

which cannot be exceeded. 

Maximum efficiency of axial rotor-only fans 

The flow field in an ideal axial impeller is two-dimensional, i.e. the velocity vectors have no 

component in the radial direction. Given this idealizing assumption, the flow field around the blade 

at a specific radial position equals the flow field around a two-dimensional airfoil and the airfoil 

drag-to-lift ratio can be used to estimate the losses. Near hub and shroud, however, three 

dimensional wall effects are very strong and the corresponding losses need to be considered even 

for ideal fans. Both loss mechanisms belong to the internal friction with the associated partial 

efficiency if. External friction and shock losses are not relevant for axial fans. Altogether, the total-

to-total efficiency of axial rotor-only fans can be computed by eq. (15):  

 
 10

7 0 008
1

160 Re 1
tt if

.

log
 


   

 
 (15) 

The middle term on the right hand side considers the profile losses of aerodynamically optimized 

airfoils after Molly [8]. The last term considers the wall effects after Marcinowski [9]. This term 

contains the hub-to-tip ratio  which is unknown so far. However, optimal values of  will be found 

in the context of the exit loss minimization, see below. 

In order to calculate the desired efficiencies ts and *

tt , the degrees of reaction Rts and *

ttR  must be 

known in addition to tt. They depend on the spanwise velocity distribution and on the hub-to-tip 

ratio. Velocity distributions and hub-to-tip ratios that lead to maximal degrees of reaction are 

indentified by an optimization scheme. The objective function, the constraints and the free 

optimization parameters are derived hereafter. The method to solve of the optimization problem is 

described in the appendix. 

The maximization of the degrees of reaction is identical to the minimization of the power associated 

with the exit losses Pdyn,2. Pdyn,2 is calculated as the integral of the local dynamic pressure pdyn,2 with 

respect to the local flow rate dQ in the exit plane A2: 
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cm,2 is the meridional velocity, cu,2 is the circumferential velocity and the indices "h" and "s" stand 

for hub and shroud, respectively. Note that eq. (16) assumes constant velocities cm,2 and cu,2 in 

circumferential direction representing a further idealizing assumption. Applying eq. (4) to non-

dimensionalize Pdyn,2 and introducing the non-dimensional velocity coefficients c = c/u and the 

non-dimensional radius r
*
 = 2∙r/D yields the power coefficient associated with the exit losses: 
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This power coefficient shall be minimized. Its magnitude depends on the radial distributions of cm,2 

and cu,2 and the hub-to-tip ratio . Generally, the velocity distributions are arbitrary and 

continuous. For the purpose of optimization, however, the radial velocity distributions had to be 

discretized which was performed using 1,000 equally spaced points between hub and tip. dyn,2 is 

hence approximated by 

  2 2

2 2 2 22 * *

dyn, cm, ,i cu, ,i cm, ,i i

i

r r       (18) 

where r
*
 is the radial distance between two points. The minimization of dyn,2 is subject to a set of 

constraints. The first constraint deals with the radial distribution of cm,2 which must yield the 

desired flow coefficient : 
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The second constraint ensures that the radial distributions of cm,2 and cu,2 yield the desired power 

coefficient. The power coefficient is calculated as the integral of the local total-to-total pressure 

coefficient with respect to the local flow coefficient. The local pressure coefficient is computed as 

the product of the local theoretical pressure coefficient according to Euler's equation of 

turbomachinery and the total-to-total efficiency tt (see eq. (15)) which is assumed to be constant 

over the blade height. Altogether, the second constraint can be expressed as follows: 
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The third and forth constraint limits the allowable values of cm,2 and cu,2, respectively. cm,2 must 

always be positive, i.e. local backflow is prohibitive. cu,2 must also be positive. In addition, it must 

not exceed the value of 1 which is corresponds to cu,2 = u and represents the theoretically maximal 

swirl velocity in fans. 

 20 cm, ,i  (21) 

 20 1cu , ,i   (22) 

The fifths and last constraint takes the radial equilibrium after Horlock [10] into account which 

stipulates that cm,2(r
*
) and cu,2(r

*
) are not independent from each other. The dependency follows a 

differential equation which was non-dimensionalized for the present work: 
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As a consequence of eq. (23), cm,2 is not regarded as a free optimization parameter because it is 

fully governed by the swirl distribution cu,2(r
*
). Hence, the optimization problem reduces to 

finding the optimal swirl distribution and the optimal hub-to-tip ratio that minimize eq. (18) subject 

to the constraints stated in eq. (19) to (23). The optimization method used to solve this problem is 

described in the appendix. Once the optimization was performed, the optimal degrees of reaction 
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and the total-to-total efficiency as obtained from eq. (15) are inserted into eq. (13) and (14) yielding 

the maximum achievable efficiencies ts and *

tt  of an axial rotor-only fan. 

Maximum efficiency of axial fans with guide vanes 

The model to estimate the internal friction losses of an axial impeller is also applied to the guide 

vanes. Hence, the efficiency of both components is computed according to eq. (15) and the overall 

efficiency of the whole fan stage becomes: 
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The computation of the exit losses is much easier as compared to the axial rotor-only fan. The swirl 

is assumed to be fully recovered by the guide vanes wherefore is does not contribute to the exit 

losses. The meridional velocity is assumed to be constant over the radius which - according to the 

radial equilibrium stated in eq. (23) - occurs if the product r
*∙cu,2 is held constant in radial 

direction. In that case, the power coefficient associated with the exit losses becomes 
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Clearly, eq. (24) and (25) suggests making the hub-to-tip ratio as small as possible - irrespective of 

the design point. In order to obtain more realistic hub-to-tip ratios, the hub-to-tip ratios as obtained 

from the rotor-only optimization were also applied to the axial fans with guide vanes. 

dyn,2 as obtained from eq. (25) is used to calculate the degrees of reaction according to eq. (11) and 

(12) which - together with the total-total efficiency obtained from eq. (24) - yield the maximum 

achievable efficiency of axial fans with guide vanes using eq. (13) and (14). 

Maximum efficiency of radial rotor-only fans 

The internal friction of radial impellers is calculated with a similar model as used for the axial 

impellers, i.e. the profile losses are estimated with the model by Molly [8] and the wall effects are 

estimated with the model by Marcinowski [9]. The application of those models to radial impellers 

implies weaknesses. The model by Molly was developed for airfoils. While one blade segment of 

an ideal axial impeller acts like an airfoil, this assumption is only a rough estimate for blade 

segments of radial impellers. The model by Marcinowski involves the hub-to-tip ratio  to estimate 

the impact of the wall effects. The model is constructed such that the losses become infinite if the 

distance between the walls (hub and shroud) becomes zero and decreases with increasing distance. 

The same qualitative effect is obtained for radial impellers when replacing the role of  with b2/D. 

However, the model is quantitatively unproven and only represents the best estimate that is 

available at present. Altogether, the total-to-total efficiency is calculated by 
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External losses originate from friction between the rotating walls (bottom disc and shroud) with the 

surrounding air. Sigloch [11] suggests that the power loss coefficient of a rotating plate is computed 

by 
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Eq. (27) can be readily applied to estimate the losses at the bottom disc. The shroud, however, has 

an inner hole which forms the impeller inlet. The size of that hole is calculated based on 

recommendations by Bommes [3] and the loss coefficient is reduced accordingly. The power loss 

due to external friction needs to be compensated by additional shaft power wherefore the efficiency 

associated with the external friction becomes 

 ef

loss ,ov




 



, (28) 

where loss,ov is the overall loss coefficient comprising the contributions from bottom disc and 

shroud. The product of eq. (26) and (27) yields the total-to-total efficiency: 
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The exit losses contain contributions from the meridional and the circumferential velocity 

component. Minimal exit losses occur if the velocities are constant over the exit plane. In contrast to 

axial impellers where the velocities are linked via the radial equilibrium, constant distribution of 

both velocity components is a valid assumption for ideal radial impellers. The power coefficient 

associated with the exit losses thus becomes 

  2 2

2 2 2 2dyn, dyn, cm, cu ,       . (30) 

In order to obtain a constant velocity profile, cm,2 is calculated as the quotient of flow rate Q and 

exit area A2. The corresponding velocity coefficient cm,2 is obtained by normalizing cm,2 with the 

tip speed u: 
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Euler's equation of turbomachinery yields the theoretically required circumferential velocity to 

obtain the desired pressure rise. This velocity is divided by the total-to-total efficiency according to 

eq. (29) to obtain the actually required circumferential velocity. Normalizing it with the tip speed u 

finally yields: 
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Unfortunately, cm,2 and tt not only depend on the design point and the Reynolds number but also 

on the geometric quantity b2/D. A similar problem is already known from the axial fans where 

adequate values of the hub-to-tip ratio  had to be found. In contrast to , b2 should not be demined 

by an optimization scheme. Eq. (26) and (31) clearly suggest making b2 as large as possible - 

without any natural limit. In practice, this would strongly increase the friction losses and eq. (29) 

would become too optimistic. Therefore, the empirical recommendation by Bommes [3] was used 

to obtain b2/D. 

The thus obtained values of cm,2,cu2 and tt can be inserted into eq. (11) to (14) to obtain the 

degrees of reaction and eventually the maximum achievable efficiencies of radial rotor-only fans. 
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Maximum efficiency of radial fans with volute 

The internal and external friction of an isolated radial impeller (eq. (29)) persists in a radial fan with 

volute. Additionally, the internal friction in the volute and the shock losses associated with the 

sudden expansion between the impeller exit and the volute inlet must be taken into account. 

Idelchik [12] estimates that the efficiency of diffusers that reduce the dynamic pressure to a 

negligible amount is approximately 91 %. Assuming that the volute acts like such a diffuser, the 

partial efficiency associated with the internal friction in the volute becomes if,volute = 0.91. 

According to Idel'cik [12] the shock loss coefficient of a sudden expansion can be estimated by 
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where n is the expansion ratio. For the present case of application, we assume n = 2 and hence 

 = 0.25. This loss coefficient is multiplied with the dynamic pressure at the impeller exit to obtain 

the exit loss. The corresponding efficiency is obtained as the flow power after expansion divided 

by the flow power prior to expansion: 
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Multiplying the efficiencies of the shock and friction losses in the volute to the previously derived 

total-to-total efficiency of a radial rotor-only fan eventually yields the total-to-total efficiency of a 

radial fan with volute: 
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 (35) 

Since it was assumed that the volute reduces the dynamic pressure to a negligible amount, the 

degrees of reaction are not needed and the maximum achievable efficiency of radial fans with 

volutes becomes 

 *

ts tt tt    . (36) 

RESULTS 

Preliminary remarks 

The equations derived above are suitable to identify the maximum achievable efficiency as a 

function of four parameters: the flow coefficient , the pressure coefficient tt, the Reynolds 

number Re and the fan type. For reasons of space and clarity, the effect of the Reynolds number is 

not discussed in the following since its influence is small compared to the influence of the design 

point and since the qualitative effect of Reynolds number is readily known ( increases with Re). 

As an example, all of the following results are based on a Reynolds number of one million. 

Although the efficiency limit was derived as a function of  and tt, the results are depicted in - 

diagrams to be comparable to the fundamental work by Cordier in the 1950s [6]. The relationship 

between the two ways to express the non-dimensional design point is 

 1 3     and 2 2

tt    . (37, 38) 
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Fig. 1 illustrates this relationship through colored areas in a - and a -tt diagram where 

utilization of the same color in both diagrams indicates that the design points are identical. Axial 

fans are typically used for high  and  but low  and tt (reddish area). Radial fans are typically 

used for low  and  but high tt and  (greenish area). Cordier [6] found that feasible design points 

are placed in a narrow band in the - diagram. The design points used for Fig. 1 and all subsequent 

figures are restricted to this band. 

Discussion of the efficiency limits 

Fig. 2 depicts the maximum achievable efficiency of axial fans with guide vanes. *

tt  reaches values 

between 80 and 95 %. The lowest values are obtained at design points with large specific fan 

diameters. Such design points lead to large hub-to-tip ratios that increase the wall effects according 

to eq. (15). ts is similar to *

tt  at design points with small high specific fan diameters. Decreasing 

specific fan diameters (= increasing flow coefficients), however, increase the exit losses associated 

with cm,2 and cause a major difference between ts and *

tt . 

Compared to axial fans with guide vanes, axial rotor-only fans have lower friction losses but higher 

exit losses associated with cu,2. Fig. 3 shows that the effect of increased exit losses dominates at 

almost all design points. The additional exit losses are highest at design points with large tt and 

low  and . 

As described in the methodology section, the exit losses of radial fans with volute are negligible 

wherefore ts and *

tt  are identical. Fig. 4 shows that most design points feature efficiencies 

between 80 and 85 %.  A decay of efficiency is observed at large specific fan diameters which are 

associated with high external friction losses and increased wall effects, see eq. (29). 

Omitting the volute decreases the friction losses but increases the exit losses which is the more 

relevant effect at most design points, see Fig. 5. At very low pressure coefficients, however, the 

recoverable swirl energy is low and a volute potentially decreases *

tt . In contrast, ts always profits 

from volutes due to the pressure recovery from the meridional velocity. 

 

 

 

Figure 1: Relationship between the two ways to express the non-dimensional design point.  

Utilization of the same colors in both diagrams indicates that the design points are identical 
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Figure 3: Efficiency limit of axial rotor-only fans (Re = 10
6
) 

 

 

Figure 4: Efficiency limit of radial fans with volute (Re = 10
6
) 

 

   

Figure 5: Efficiency limit of radial rotor-only fans (Re = 10
6
) 

   

Figure 2: Efficiency limit of axial fans with guide vanes (Re = 10
6
) 
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CONCLUSIONS 

A model-based analytical method to estimate the maximum achievable aerodynamic efficiency of 

fans was presented. Four fan types (axial rotor-only, axial with guide vanes, radial rotor-only and 

radial with volute) and two efficiency definitions (total-to-static and total-to-total) were considered. 

The maximum achievable efficiency of each fan type was estimated as a function of the design 

point and the Reynolds number. To this end, loss models estimating internal friction, external 

friction, shock losses and exit losses were derived. Aiming at the theoretical efficiency limit that 

can by no means be exceeded, a set of idealizing assumptions was applied in the loss models. 

This work is theoretical in the sense that the developed method does not yield the fan required to 

actually reach the estimated efficiency limit. In fact, it is doubtful if the efficiency values can be 

realized in practice. Therefore, current research focuses on the estimation of practically achievable 

efficiency limits stemming from CFD-based optimization. 

ACKNOWLEDGEMENTS 

Parts of this work were funded by the German Research Association for Air and Drying 

Technology (FLT e.V.). The authors greatly appreciate this support. 

REFERENCES 

[1] Pfleiderer, C., 1961, Die Kreiselpumpe für Flüssigkeiten und Gase, Springer Verlag, Berlin-

Heidelberg. 

[2] Pfleiderer, C., Petermann, H., 1991, Strömungsmaschinen, Springer-Verlag, Berlin, Germany. 

[3] Bommes, L., Fricke, J., Grundmann, R., 2003, Ventilatoren, Vulkan Verlag, Essen. 

[4] von Backström, T. W., van der Spuy, S. J. Stinnes, W. H., 2000, "The Limiting Efficiency of 

Rotor-Only Axial Fans and Turbines", Proc. International Conference on Applied Mechanics 

SACAM, Durban, South Africa, pp. 647-652. 

[5] Bamberger, K, Carolus, T, 2015, "Achieveable Total-to-Static Efficiencies of Low-Pressure 

Axial Fans", Proc. International Conference on Fan Noise, Technology and Numerical 

Methods, Lyon, France. 

[6] Cordier, O., 1953, "Ähnlichkeitsbedingungen für Strömungsmaschinen", BWK, 5(10), pp. 

337-340. 

[7] EN ISO 5801:2009, 2010, "Industrial Fans - Performance Testing Using Standadized 

Airways," Beuth Verlag, Berlin, Germany, Berlin, Germany. 

[8] Molly, J. P., 1990, Windenergie. Theorie - Anwendung - Messung, C.F. Müller, Karlsruhe. 

[9] Marcinowski, H., 1959, "Einstufige Turboverdichter - Wichtigste Merkmale und 

Betriebseigenschaften", Zeitschrift für technische Chemie, Verfahrenstechnik und 

Apparatewesen, 4, pp. 237-247. 

[10] Horlock, J. H., 1967, Axialkompressoren, Verlag G. Braun, Karlsruhe. 

[11] Sigloch, H., 2013, Strömungsmaschinen: Grundlagen und Anwendung, Hansa Verlag, 

München, Germany. 

[12] Idel'cik, I. E., 2005, Handbook of Hydraulic Resistance, Jaico Publishing House, Mumbai, 

India. 

[13] Nelles, O., 2001, Nonlinear System Identification, Springer Verlag GmbH, Heidelberg, 

Germany. 

[14] Giles, M. B., Pierce, N. A., 2000, "An Introduction to the Adjoint Approach to Design", Flow, 

Turbulence and Combustion, 65, pp. 393-415. 



FAN 2018   12 
Darmstadt (Germany), 18 – 20 April 2018 

APPENDIX 

Maximization of the degrees of reaction of axial rotor-only fans 

The objective function is to minimize the power coefficient dyn,2 which depends on several 

variables. It is distinguished between design variables  that shall be optimized (here: swirl 

distribution cu,2 and hub- hub-to-tip ratio ) and state variables U which are a direct consequence 

of the design variables and are therefore not varied freely in the optimization scheme (here: cm,2). 

The optimization problem was solved with the conjugate-gradient method which belongs to the 

class of nonlinear gradient-based optimization methods, see Nelles [13] for a detailed description. 

Application of a gradient-based optimization method requires knowledge about the gradient of the 

objective function with respect to the design variables. A general formulation the objective function 

of a constrained optimization problem is 

 minimize L J k R    (39) 

where L is called the Lagrange function, J is the original objective function (without accounting for 

constraints), R measures the violation of the constraints and the weighting factor k is called the 

Lagrange multiplier. In the present case of application, however, the constraints associated with the 

fulfillment of the design point and the minimum/maximum values of cm,2 and cu,2 were also 

assigned to J via penalty terms wherefore the term k∙R only accounts for the radial equilibrium 

stated in eq. (23). Note that due to the discretization of the velocity profile at 1,000 points, k and R 

are vectors with 1,000 elements each. 

The easiest way to obtain the gradient of L with respect  is to use the method of finite differences 

in which each element of  is changed by a small but yet finite value, the corresponding value of L 

is calculated and the quotient of the changes in L and  is used as an approximation of the partial 

derivative. The associated computational cost, however, would be immense because the state 

variables would need to be recomputed for each variation of the design variables involving the 

numerical solution of eq. (23). For that reason, the method of finite differences was only used to 

obtain the gradient with respect to . The gradient with respect to the 1,000 values of cu,2 was 

calculated using the adjoint method which has the overwhelming advantage that the computational 

cost is independent from the number of design variables. Giles and Pierce [14] provide a general 

introduction into the discrete adjoint method which was used as the basis for the present case of 

application. The total derivative of L with respect to  is 

 
d d

d d

L J R U J R
k k

U U   

      
        

      
. (40) 

The trick behind the adjoint method is to select the Lagrange multiplier k such that the derivation of 

the state variables with respect to the design variables vanishes from eq. (40): 
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Therefore, the gradient only depends on the computationally cheap partial derivatives of J and R 

with respect to  and U. The computational cost for computing the required Lagrange multiplier k is 

in the same order of magnitude as a single computation of U for one set of design variables - 

irrespective of the number of design variables. 


