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SUMMARY

In axial fan design, sound reduction has become an area of great interest. One approach to decrease
the sound radiation of axial fans is the modification of the fan blade leading edges, particularly
if the fan is operating under inflow conditions with a high inflow turbulence intensity. In this
study, a generic flat-plate fan with different sinusoidal leading edge geometries was investigated
to identify the impact of the leading edge design on the aerodynamic and acoustic properties. The
results showed that the sound emission can be substantially decreased by the change in the leading
edge geometry, along with an improvement of the pressure rise and the efficiency. These findings
can be further used for the aeroacoustic optimization of axial fans.

INTRODUCTION

Low–pressure axial fans are used in a large variety of applications. Complex installation situations
of axial fans often result in a distorted flow–field upstream of the fan with a noticeable increase in
the turbulence intensity. Such distorted inflow conditions lead to a substantial increase in the sound
radiation of the fan [1, 2, 3, 4, 5, 6, 7, 8]. For a selective reduction of the sound generation mechanisms
under distorted inflow conditions, particularly turbulence ingestion noise, leading edge serrations have
been used successfully on flat plates and airfoils. These sound reduction effects can, in theory, also
be transferred to axial fans.

Sound reduction by leading edge serrations in flat plates and airfoils

In many cases, leading edge modification approaches include the use of sinusoidal leading edges
or a variation of those. Important design parameters for sinusoidal leading edges are the serration
wavelength λLE and the serration amplitude aLE (Figure 1). They are often expressed in percentage of
the chord length lc.
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Figure 1: Serration wavelength λLE and amplitude aLE for a sinusoidal leading edge.

The sound reduction for flat plates and airfoils is mainly achieved by a decrease in turbulence ingestion
noise [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

On comparing the pressure fluctuation levels on straight and sinusoidal leading edges, it was found
that the levels are substantially higher on straight leading edges than on sinusoidal leading edges. This
occurs due to decreased pressure fluctuations at the top and midslope of the serrations. A decrease in
acoustic pressure fluctuations in the leading edge region, i.e. turbulence ingestion noise, is thereby
attributed to a reduction in hydrodynamic pressure fluctuations. [11, 15, 14, 13, 17, 18, 19, 20]

A reduction of hydrodynamic pressure fluctuations in the leading edge region is also associated with
a reduction of unsteady blade forces [13, 15], which is a potential tonal sound source in axial fans
[21, 22].

Besides this, leading edge serrations also induce a sound source decorrelation effect in the leading edge
region [11, 13, 14, 15, 17, 18, 19]. For this, there are different suggestions on the optimal serration
wavelength λLE. Clair et al. [11] state that the serration wavelength should be lower or close to the
integral length scale of the inflow. In contrast, Chaitanya et al. [20] suggest a leading edge wavelength
of four times the size of the integral length scale Λ for an optimal sound reduction.

For flat plates and airfoils, the sound reduction has been found to be greater influenced by the serration
amplitude aLE than by the serration wavelength λLE (for sinusoidal leading edge serrations). [9, 11,
13, 14, 16, 17, 19]

As a further development of sinusoidal leading edge, Chaitanya et al. [23] propose double-wavelength
sinusoidal serrations (i.e. a superposition of two sinusoidal serrations). This approach showed a higher
sound reduction, compared with single sinusoidal leading edge serrations, due to the occurrence of
interferences between adjacent serration roots.

Sound reduction by leading edge serrations in axial fans

There are only a few studies on the application of leading edge serrations in axial fans, or rotating
systems in general.

A numerical study of the aerodynamic impact of sinusoidal leading edges in a low-pressure axial fan
was made by Corsini et al. [24]. The leading edge modifications were not applied along the whole
fan blade span, but only to the outer 20% of the fan blade. The sinusoidal serrations had an amplitude
aLE = 0.03 lc,tip and a wavelength λLE = 31 lc,tip, with the chord length at the fan blade tip lc,tip. For the
fan with the sinusoidal leading edges, a reduction in the sound power level of 2.3 dB was observed,
compared with the reference fan with straight leading edges. Corsini et al. found that this reduction
was induced by a change in the tip-leakage vortex behavior

The study by Corsini et al. [24] proved, that leading edge serrations can be successfully applied to
axial fan blades for a decrease in the sound emission. Nevertheless, to date, there is still limited
knowledge on the optimal leading edge parameters available. Hence the goal of this study was to
deliver a compact parametric study of the impact of different leading edge geometries on the sound
emission of a generic flat–plate fan.
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EXPERIMENTAL SETUP

For the parametric study, a reference fan with straight leading edges, four fans with single-sine serra-
tions (sinusoidal), and four fans with double-sine serrations (two sine waves superposed) were inves-
tigated with focus on their aerodynamic and acoustic properties.

Axial fan design and leading edge parameters

The generic flat–plate fan (Figure 2) had a hub diameter dhub = 250mm, an outer diameter dfan =
497mm and a tip gap size stip = 1.5mm. Flat aluminum plates with a thickness t = 6mm were used
as fan blades. The blades were designed so that the leading edge coincides with the radial direction,
thus eliminating the impact of any type of fan blade skew on the sound emission. As the flat plates
were not twisted, the stagger angle was γ = 20° along the whole fan blade span (Figure 2).

y

z

xγ

Figure 2: Simplified axial fan with straight leading edges.

The fan blades of the generic flat–plate fan were interchangeable, hence only one fan hub was used.
As reference case (REF), a fan blade set with straight leading edges was used (Figure 2). The mean
chord length lc of the fan blades with leading edge serrations was identical to the chord length of the
fan blade with straight leading edges (REF), with lc = 72mm. The leading edge parameters for the
single-sine serrations and the double-sine serrations are listed in Tables 1 and 2. For the double-sine
serrations, Φ corresponds to the phase difference of the two sine waves.

Table 1: Single-sine serration parameters.

name aLE in % lc λLE in % lc

A133λ67 13.3 6.7
A133λ100 13.3 10
A167λ67 16.7 6.7
A167λ100 16.7 10

The chosen values of the serration parameters correspond to typical values for leading edge serrations
of flat plates and airfoils as described in the previous Section. A fan blade of each blade set is shown
in Figure 3.
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Table 2: Double-sine serration parameters.

name aLE in % lc λ1,LE in % lc λ2,LE in % lc Φ

A67λ67_133_0 6.7 6.6 13.3 0
A67λ67_133_2 6.7 6.6 13.3 π/2
A67λ100_200_0 6.7 10 20 0
A67λ100_200_2 6.7 10 20 π/2
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Figure 3: Fan blade geometries with straight leading edge (a), single-sine leading edges (b) to (e) and double-
sine leading edges (f) to (i).

Fan installation

All investigations were made in a standardized inlet test chamber, based on ISO 5801 [25], with
absorbing walls, ceiling and floor (Figure 4). Thereby, the fans were installed in a short duct segment
with a diffusor downstream of the fan and an inlet bellmouth upstream of the fan (Figure 4). To increase
the inflow turbulence intensity, a grid, built up of rectangular cells with amesh size tmesh = 24mm, was
used (Figure 4). The grid had a solidity of α = 0.31. A study on the grid-induced inflow parameters
can be found in [26].
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Figure 4: Inlet test chamber and fan installation. Dimensions in mm.

Sound field

The radiated sound field of the fans was captured with seven 1/2” free–field microphones that were
arranged in a semicircle in a horizontal plane around the inlet bellmouth (Figure 5). Overall sound
pressure levels and sound pressure spectra were averaged over the seven microphone positions.
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Figure 5: Microphone positions, schematic (left) and photograph (right). Dimensions in mm.
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RESULTS

First, the impact of different leading edge geometries on the aerodynamic and acoustic characteristic
curves is discussed. After that, the acoustic properties are examined on the basis of averaged sound
pressure spectra at two different operating points.

Aerodynamic and acoustic characteristic curves

Aerodynamic and acoustic characteristic curves of the different fans are shown in Figure 6 (single-sine
serrations) and Figure 7 (double-sine serrations).

Both single- and double-sine serrations lead to higher total-to-static pressure difference values ∆pts
in the range V̇ ∈ (0.8, 1.2), compared with the reference fan with straight leading edges. Based
on previous studies on flat plates and airfoils [27, 11, 28, 29, 30, 16], a shift of stall onset to higher
angles of attack (i.e. lower volume flow rates for axial fans) is mainly expected for post-stall operating
conditions. This corresponds to operating points at which stall occurs on the fan blades. In axial fans,
stall usually occurs at volume flow rates that are smaller than the volume flow rate with the highest
efficiency. Hence the operating points with increased total-to-static pressure difference values∆pts for
the fans with leading edge serrations do not necessarily correspond to the post-stall region. However,
owing to the constant stagger angle γ, the angle of attack αa varies along the span. Consequently, it
cannot be guaranteed that all blade sections (from hub to tip) are operating in the pre-stall range at
the volume flow rate with the highest efficiency, particularly those near the fan hub. In general, all
types of leading edge serrations provide similar improvements in the range V̇ ∈ (0.9, 1.2). At lower
volume flow rates, the double-sine serrations lead to a higher total-to-static pressure difference than
the single-sine serrations.

Although there is no major impact on the total-to-static pressure difference, the total-to-static effi-
ciency ηts is substantially increased by all types of leading edge serrations. The efficiency for the fans
with serrated leading edges is expected to be improved, due to streamwise vortices that develop on the
serrations and interact with the radial directed flow [11, 29, 30, 28, 17, 17]. This also affects the tip
vortex formation [31, 32, 33, 34] and hence reduces losses in the tip region, as observed by Corsini et
al. [35, 36].

In addition to the efficiency improvements, the leading edge serrations lead to a greatly decreased
sound emission. The averaged overall sound pressure levels Lp of the reference fan with straight lea-
ding edges are higher than those of the fans with modified leading edges. Thereby, differences of up to
∆Lp = 6.6 dB occur (for the fan with the fan blades A167λ67 at a volume flow rate V̇ = 1.1m3/s). In
general, the sound reduction is more prominent for the fans with single-sine serrations than for the fans
with double-sine serrations. For the single-sine serrations, the fan blades with the smallest wavelength
λLE and the largest amplitude aLE shows the greatest sound reduction at nearly all considered volume
flow rates. The acoustic characteristic curves for the fans with double-sine serrations are very similar
with hardly any observable differences between the four investigated leading edge geometries. For
the double-sine serrations, differences of up to ∆Lp = 4.9 dB occur (for the fan with the fan blades
A67λ67_133_2 at a volume flow rate V̇ = 1.1m3/s).

A detailed discussion of the impact of the leading edge serrations on the sound generation mechanisms
in axial fans will be given on examining averaged sound pressure spectra at two different volume flow
rates with V̇ = 0.7m3/s and V̇ = 1.1m3/s.
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Figure 6: Aerodynamic and acoustic characteristic curves for the fans with single-sine serrations.
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Figure 7: Aerodynamic and acoustic characteristic curves for the fans with double-sine serrations.

Averaged sound pressure spectra

Averaged sound pressure spectra are shown in Figures 8 and 9 for V̇ = 0.7m3/s and in Figures 10
and 11 for V̇ = 1.1m3/s.

For the spectra at V̇ = 0.7m3/s, an impact of the leading edge serrations can be seen in the frequency
range f ∈ (0.4 kHz, 2 kHz). Hence for this volume flow rate, mainly broadband sound is reduced.
As already observed for the acoustic characteristic curves, this impact is more prominent for the fans
with single-sine serrations than for those with double-sine serrations.
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Figure 8: Averaged sound pressure spectra for the fans with single-sine serrations at a volume flow rate V̇ =
0.7m3/s.
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Figure 9: Averaged sound pressure spectra for the fans with double-sine serrations at a volume flow rate
V̇ = 0.7m3/s.
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Figure 10: Averaged sound pressure spectra for the fans with single-sine serrations at a volume flow rate
V̇ = 1.1m3/s.
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Figure 11: Averaged sound pressure spectra for the fans with double-sine serrations at a volume flow rate
V̇ = 1.1m3/s.
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In contrast to the spectra at a volume flow rate V̇ = 0.7m3/s, a substantial impact of the leading edge
serrations is observed at V̇ = 1.1m3/s – not only for broadband components, but also for subharmonic
narrowband (around f = 290Hz) and tonal components at the blade passing frequency (f = 223Hz)
and harmonics.

A decrease in broadband sound components is clearly visible for the fans with leading edge serrations
up to frequencies f = 2 − 3 kHz. Thereby, the single-sine serrations lead to a greater reduction than
the double-sine serrations. One can argue that this is due to lower serration amplitude aLE in the case
of the double-sine serrations; however, owing to the superposition of two sine waves, the maximum
(combined) amplitude of the double-sine serrations is similar to the amplitude of the single-sine serra-
tions. Hence at similar amplitude values, the single-sine serrations provide a greater sound reduction
than the double-sine serrations. For the single-sine serrations, the fan blades with a smaller serration
wavelength λLE (A133λ67 and A167λ67) show a higher sound reduction for f ∈ (0.4 kHz, 2 kHz)
and a volume flow rate V̇ = 1.1m3/s. At the volume flow rate V̇ = 0.7m3/s, no dependency on the
serration parameters is visible. The decrease in broadband components of the double-sine serrations is
generally very similar among the four invested geometries, albeit a slightly higher decrease was obser-
ved for the fan blades with a smaller serration wavelength λLE (A67λ67_133_0 and A67λ67_133_2).

For flat plates and airfoils, in general no sound reduction of tonal components is observed with leading
edge serrations. However, a reduction of unsteady blade forces has been reported [13, 15]. In axial
fans, such unsteady blade forces are a very effective tonal sound source [21, 22]. These components
occur at the blade passing frequency fBPF = 223Hz and harmonics. Particularly for the fans with
single-sine leading edge serrations, the tonal peak at fBPF is reduced. A further reduction is also
observed for higher harmonics. In contrast, hardly any change in tonal components is observed for
the double-sine serration fans. Hence at least for the single-sine serrations, a change in the leading
edge geometry leads to an decrease in tonal sound components which can be related to a reduction of
unsteady blade forces.

At a volume flow rate V̇ = 1.1m3/s, there is a particularly high reduction of subharmonic narrowband
sound components, that occur around f = 290Hz. These components are induced by flow phenomena
in the tip region. For the configurations with leading edge serrations, these contributions are greatly
decreased. The reduction is slightly more pronounced for the fans with single-sine serrations than
for the fans with double-sine serrations. In general, no dependency on the serration wavelength or
amplitude is observed. The reduction of subharmonic narrowband components is a clear indicator of
a substantially altered flow-field in the tip region, as the the tip vortex formation and the tip leakage
flow are the driving parameters for this sound generation mechanism. It can be expected, that similarly
to the observations by Corsini et al. [35, 36], counter rotating vortices that are induced by leading
edge serrations interact with and weaken the tip vortex. Additionally, the vortices are expected to
interact with the radial directed flow near the fan blade surface, which further suppresses the tip vortex
formation [31, 32, 33, 34].

CONCLUSION

In this study, the effectiveness of leading edge serrations for reducing the sound emission of a generic
flat-plate fan was investigated experimentally. In total, nine fans with different leading edge geome-
tries were studied, among them four fans with single-sine leading edge serrations and four fans with
double-sine leading edge serrations. The results showed that there is a high potential for reducing axial
fan noise with a modification of the leading edge geometry. Thereby, analogies to the sound reduction
mechanisms by leading edge serrations, applied to flat plates or airfoils, were found. Additionally,
effects that occur only for rotating systems were uncovered. In general, single-sine serrations showed
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a higher sound reduction than double-sine serrations. Among the single-sine serrations, those with the
smallest serration wavelength and the highest serration amplitude lead to the greatest decrease in the
sound emission. This study suggests that there is a high potential for decreasing the sound emission
of axial fans through the application of leading edge serrations.
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