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SUMMARY

Engine cooling fans have long been recognized asobthe major noise sources in a vehicle.
As the engine and other vehicle components are maigter, the need to reduce fan noise has
become more and more urgent. To reduce fan noiaeast-effective manner, it is necessary to
incorporate the component of noise reduction im@arly design stage. In this paper a detailed
experimental study on an automotive vehicle coolsygtem is presented. The aim is to

investigate the flow generated noise, charactahiezeheat exchanger damping properties and
investigate the use of near-field noise controlngro-perforated (MPP) shrouds and tuned
MPP dampers. For the tested standard automotiviengoan system the MPP shroud gave a
reduction in the range 1.5 to 4.5 dB(A) dependingh® fan speed. Also the absorption on the
back-side is significantly increased which can pedthe noise further. The near-field tuned
MPP damper concept is also promising and giveslact®n around 3 dB(A) at the operating

points.

INTRODUCTION

Background

Low-speed rotating axial and radial fans are fredlyeused to manage engine temperature by
ensuring adequate airflow through heat exchangadiator), especially at low vehicle speeds or
idle. An undesirable side effect of these fans esegation of flow-induced noise, which is an
annoyance to the operators and passengers, andree sof community noise, especially for
commercial vehicles and heavy equipment. In mosesand particularly for high mass flow
configurations, the cooling fan is a major conttdyuto the overall noise, and in some cases
dominates relative to other sources such as engiaesmission, tire, mechanical, or exhaust
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contributions [1]. In addition, cooling fan noise a perceived quality issue that can affect brand
image and customer satisfaction. Given the reguiatand growing importance of acoustic comfort
in many markets, there is high value in addressouling fan flow-induced noise problems as early
as possible during product development.
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Figure 1. An analysis of contribution factors ohstruction machinery.

Some investigations have been published on noiserggon and sound radiation from cooling
systems in vehicles. Staiano [2] had investigatee éngine fan noise in buses and made
measurements on a transit coach operated overcdispeperating cycle to determine the relation
of fan usage to noise exposure levels. In Reftf#],development of a radiator cooling fan used in
automobile vehicles has been reviewed with a pregamise control technique developed for the
design of quiet marine propellers. Frid et.al.f#de extensive investigation on diesel train engine
cooling noise as part of the EU-project SILENCE e@fvious conclusion from the above works is
that increased use of cooling control strategidschivalso considers noise emission is a measure
which can be applied more. Some recommendations been presented by Dittrich and Zhang [5]
regarding the relation between cooling fan noise irational speed under average conditions of
constant speed, acceleration, standstill/idling deckleration. Schulte-Werning et.al. [6] described
a test made on a locomotive to find ways of reduyithve noise of the cooling ventilation by several
modifications such as: the change of fan bladeigardtion and the use of sound-absorbing surface
layers and silencers.

Fan noise mechanisms

Generally, the principal noise mechanisms of Iqwspeed, axial flow fans can be separated into
the two categories of non-rotational and rotatiofidl. The non-rotational includes blade
interactions with inflow distortion and turbulenamd with nearby fixtures, while the rotational
noise includes laminar boundary layer vortex shegldblade interactions with the tip clearance
vortex and blade stall. The above mechanisms witlegate aeroacoustic dipole noise. Concerning
monopole noise related to the blade thicknessntlma neglected for subsonic fans [8]. Finally,
guadrupole noise due to the unsteady momentumpianis turbulent flows, is also negligible for
subsonic fans [9]. Therefore as proposed by Ndi6g fhe dominant aeroacoustic noise source
for subsonic fans comes from dipole sourdée dipole sources can be divided into two
types, due to the steady rotating forces a@ud to the unsteady rotating forces. For a
uniform inflow without disturbances, periodiagepsure fluctuations at discrete harmonicstexi
and the corresponding tonal noise is referredstéGaitin-noise’ [11]. In the case of low Mach-
numbers the ‘Gutin-noise’ contribution is negligibThe non-uniform stationary inflow will create
the harmonic part of the fan noise spectrwith tones at multiples of the blade passing
frequency (BPF = (B number of blades) x (shafttrotel frequency)). The levels of these tones
are, especially for axial fans, strongly influend®d interaction with outlet guide vanes. It is not
surprising that the separation between guide vandslades has a large influence on the level
of the tones [12], but also the circumfei@meriodicity plays an important role [13].



FAN 2015 3
Lyon (France), 15 — 17 April 2015

The non-uniform unsteady flow entering the fis mainly associated with inflow turbulence
and produces low frequency broad band noise.
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Figure 2. Overview of the aeroacoustic sound geti@mamechanisms for fans [10].

The last three source terms at the bottom in FiQuoensist of several parts categorized as self-
noise and concern the flow induced sound over thdels. Much attention has been paid to the
research of these mechanisms, see for instance[Refl]. Tip clearance noise or tip clearance
vortex noise is one of the most important self-aosources [10] and contributes to the high
frequency broadband spectrum. The mechanism id\siimgt air is forced to flow between the high
and low pressure side through the gap at the lipdend then forms vortices propagating with the
flow. The tip clearance flow has significant effean both the acoustic and the aerodynamic
properties of the fan.

Fan noisereduction methodologies

A useful starting point to reduce the noise gemerfitom the engine cooler is to draw a source and
transmission path model, which is shown in Figure 3
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Figure 3. A source-transmission path model fornibese produced by the cooling fan unit [22].

Such a model lists the main source mechanisms landngin transmission paths for the acoustic
power via various subsystems into sound power tedito the outside. Based on this model one
can then try to rank the different sources andstrassion paths in order to determine a priority lis
for noise control measures [22].
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The fan noise reduction can be achieved by: (i3eoeduction by source modifications; (ii) noise
reduction by transmission path modification [11heTnoise reduction by source modifications (i)
can be performed by minimizing fan RPM for a giwaslume flow (LowAP design), reversing
airflow and use an axial fan in a pushing configjora[4], using axial fans with swept blades or
radial fan, reducing rotor-stator interaction ndisg wake generator, etc), optimizing the number of
guide vanes (Tyler-Sofrin rule), reduce tip cleaemmoise [4] and using an active control i.e,
inserting anti-sources [22]. Most of all these m®gd source modification have taken into account
during the ECQUEST [23] project, the final Fan ¢éguafations are shown in Figure 6(a, b) and
Figure 7(a, b). The present paper contributes tp npise reduction by transmission path
modification. A detailed experimental study on amoanotive vehicle cooling system is presented.
The aim is to characterize the heat exchanger daymmioperties and investigate the use of near-
field noise control by so called micro-perforatddtes (MPP).

MEASUREMENT PROCEDURE

General

All test objects have been tested using Flow Adoubest Facility at The Marcus Wallenberg
Laboratory (MWL) at Kungliga Tekniska Hogskolan (K) The test objects were mounted in the
wall between the anechoic and the reverberant r@mddreated as wall elements and the measured
results were performed in one third octave band.

Experimental characterization of Heat Exchangers (HE)

A sound source emitting white noise was mountedhi reverberation room and the sound
transmission loss is calculated based on the medsasults using the ISO 15186-1:2000 [24] as:

TL=L, -6-(L, +10log(S, / S)) 1)

where L js the sound pressure level measured byaéing microphone in the reverberation room

and L, is the sound intensity level obtained by scannirgdurface of the heat exchanger with an
intensity probe in the receiving anechoic room [ZH)e whole setup can be seen in Figure 4 and
for the present test case the ar&asand S are equal. The measurement with flow is performed
based on the modification of ISO 15186 which isspreed in Reference [26-27].
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Figure 4: Measurement setup used with ISO stan@BHsd86-1:2000) procedure.
(a) Reverberant room side,
(b)HE & condenser,
(c) Anechoic room side.
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Figure 5.Acoustic characteristics of heat exchangay Measured TL using the ISO: 15186-1:2000.

Using the measured transmission loss presentedgurd=5 and based on the theoretical model
which is presented by the same authors [26], treusiic performance of exchanger can be
theoretically characterized and optimized using Npifes instead of louvered substrates.

Experimental characterization of cooling fan units

The radiated sound power in one third octave banmeasured using the 1ISO 3747 method [28]
with a reference source. The sound powsy) (s calculated based on the measured results as
follow:

LW:Lp+(LW,R_Lpﬁ) (2)

where,L, is the average sound pressure of the source iretregberation room, g and Lwris the
sound pressure level (SPL) and sound power of ¢ferance source. The background noise is
measured and has been canceled out from the égalts.

In this study, two cooling units are acousticallyaracterized; a five bladed semi radial fan see
Figure 6 and an eight bladed axial fan as showRigure 7. During these studies the effect of
engine block on the radiated sound power is takémaccount by using a wooden block with the
same engine size at 110 mm from the fan housing.

(@ (b)

Figure 6. Semi — radial fan. a) Constructor drawioffan used during the experimerntote the back plate that
redirects the outflow into the radial direction. &m areas denote the shroud sections + back pégtiaced by MPP,
b) Modified unit with shroud and back plate madetlgan MPP. c) Shows the Engine dummy block inadvoo
LxWxH=880x682x627 mni standing in the reverberation room.
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Figure 7. Axial fan used during the experimentse&r areas denote the shroud sections replaced . MP
(a) Constructor drawing , (b) Photo of the unit.

The effects of shroud, back plate material andrardy engine block which shown in Figure 6, on

the acoustic source strength (radiated sound powerg measured under different controlled

conditions. For the back plate two MPP arrangemerte used. A single (standard) MPP plate and
a double wall MPP with two standard plates sepdrdt®@ mm by a space filled with melamine

foam. The cooling units were derived with elecmotor and mounted between two acoustic test
chambers with the receiving (downstream) side uwemngerant chamber where a rotating boom was
used to measure the source strength for differantRPM’s, see Figure 6 (c). Sample of the
measured results for the semi-radial fan with aagand modified shroud with MPP is presented in
Figure 8. Also, the effect of the MPP shroud on #x&al fan radiated sound power is tested,
compared with the original unite at the desiredrafieg speeds are presented in Figure 9.
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Figure 8. Sound power versus frequency for the-sedial fan, original shroud,
MPP Shroud and MPP back plate, see Figure 6a.
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Figure 9. Sound power versus frequency for theldaiawith original, MPP shrouds and engine block.

Comparison between measured resultsfor semi-radial and axial fans

In Figure 10, the radiated sound power of two festqiypes are compared at two different speeds
which give the same volume flow rate, and both waglpoints are almost at the best efficiency of

fans. As seen from the figure, the semi-radial fmmoisier than the axial fan at the desired

operating conditions.

Comparison between Semi-Radial and Axial Fans with Original Shroud with Eng. Block at 110 mm
90

Sound Power dB(A)

45

""" @+ Semi-Radial at 2200 rpm )

=+ Axial Fan at 2400 rpm
1 1 1 1 I I

40

10° 10 10"
Frequency (Hz)

Figure 10. Comparison between semi-radial 89 dB{#d axial fans 87.5 dB(A)
at the desired operating conditions using origishtoud.

The effect of using the MPP shroud on two fan pxqes are presented in Figure 11, it can be
noticed that the reduction with a semi-radial fanhigher than the reduction with an axial fan,
mainly due to the larger area (shroud + back plate)ered with MPP, compare green areas in
Figure 6(a) and Figure 7(a). It can be seen treatdadiated sound power could be reduced between
(2-4) dB(A) by using a MPP shroud compared with dhiginal metal shroud. However, it can be
noted that this reduction goes down as the RPM gpe3he reason is that a MPP has a frequency
limit where the imaginary part of its impedancertstdo dominate. For the MPP used here, this is
around 1000 Hz and for frequencies much higher thenthe damping is poor. This limit can be
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controlled by using a MPP with smaller holes, whigh push the frequency limit up in frequency.
The use of a double wall MPP has a very small ef@d gives no significant improvement; see
Figures 10. Another alternative to handle this p@oh i.e., extending the MPP frequency range,
which will be discussed in the incoming sectiontdsuse a resonant volume on the back side of
the MPP.

T T T T T
° MPP Shroud +2 MPP back Plaeand Origenl Shroud for semi-radial fan

MPP shroud +1 MPP back Plate andOrigenl Shroudfor semi-radial fan
A MPP andOrigenal Shrouds for axid fan

Difference in Sound Power dB(A)

] o
A
A A N A
1h A A 1
O L L L L L
1600 1800 2000 2200 2400 2600

Frequency (Hz)

Figure 11. Difference in sound power using the imiddjand MPP Shroud with single and double MPP bpalcite
with engine block for semi-radial and axial fan.

Design of atuned M PP damper

The idea of the concept is to maximize the MPP dagm a certain frequency range, i.e., around
the resonance of a Quarter Wave Resonator (QWRJ}edtothe concept the semi-radial fan back
plate was fitted with QWRs as shown in Figure 12e Rcoustic impedance of a MPP coupled to a
resonator is composed of facing-sheet impedancsisiaace and reactance) and air-cavity
impedance. Here it is assumed that the cavity gallp reacting and behaves as a quarter wave
resonator. This gives

3)
2 =(nypp* Xypp) ~icot (kh)

where z*= Zpc is the normalized acoustic impedance, Z is theustic impedancepc is the
characteristic impedance of aigpp is the normalized acoustic resistancgepxis the normalized
acoustic reactance, k is the wavenumber, and treisesonator depth in m. For the MPP type used
here with slit like holes it was decided to use iimpedance formula presented in Ref. [29,30],
which can be summarized as follow, the normalizsistance can be written as

1
B jaIP tanh( ksy/ j) 2aR; 0.3Mg
"MPP o : HP o
oc Ksy/ ] apc o (4)

and the normalized reactance can be written as
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ja !1_ tanh ksﬂ)]_l | ks

=1
MPP =M ksy/J oc (5)

where, k= d,\/Jw/ 47 is the Stokes number relating the slit width to #igcous boundary layer
thickness,o is the MPP porosityM is the grazing flow Mach numbet, is the MPP thickness

and d, is the slit widtha is 4 for sharp slit edges, = /27p /2, the factord is the acoustic end

-1
correction for both side of the slit and put eqteal0.62d, andF; = (1 + (126 Mg)a) is the

flow effect on acoustic reactance. The shape of Qd&Rhow it is connected is shown in Figure 12

and the working frequency is shown in Figure 13 (&lso, the related absorption (normal
incidence) coefficiento) can be calculated as:

a= ATyep _ (6)
(1+ Typp)” + (X — cOt(Kh))

The absorption coefficient of the total designed isnshown in Figure 13(b).

Figure 12. Semi — radial fan with, MPP shrc;ud anB®back plate fitted with QWRSWR dimensions;
inner diameter 100 mm, height 80 mm, covered witf? MRh, thickness 1 mm, slit width 0.2 mm and 1%gity.
QWR covered area is 40% of the total back plataar
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Figure 13. Acoustic performance of a tuned MPP dantgased on the data in figure 12.
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Effect of tuned M PP damper on semi-radial fan radiated sound power

Based on the measured results presented in Figdrascan be concluded that the radiated sound
power from the fan cooling unit can be reduced byB4A) in a given 1/3-octave, which can be



10

that covering the whole back plate area would aseethe damping and bandwidth. Also one can

tune the resonators differently to (say) 2-3 counsBee 1/3 octaves to further increase the
bandwidth. For the tested prototype the total sopader reduction amounts to 2 dB(A), see

increased to 6 dB(A) by combining with the MPP Sitr@s shown in Figure 15(b). It can be noted
Figure 16.
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Figure 15(a). Reduction in sound power versus feemqpy for the semi-radial fan at different fan spged
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Effect of M PP Shroud and QR
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Figure 16.(b) Reduction in sound power versusudezgy for the semi-radial fan at different fan gpee
MPP shroud and tuned MPP damper.

Comparison between Semi-Radial and Axial Fans
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Figure 17. Comparison between semi-radial and afdalat the desired operating conditions before aftdr adding
modifications. Semi-radial fan with original shro88 dB(A), semi radial fan with MPP shroud and wh¢PP
damper 87 dB(A), axial fan with original shroud 8dB(A) and axial fan with MPP shroud 85.8 dB(A).

CONCLUSIONS

Based on the presented results, a micro-perfo®&dP) shroud can reduce the total sound power
radiated from an automotive cooling fan unit witb 10 4.5 dB(A), depending on covered area and
fan speed, see Figures 6-9 and 11. Also the alisorph the back-side is significantly increased
which can reduce the noise further. The concepisofg a tuned MPP damper is also tested and is
promising giving a reduction around 3-4 dB(A) a¢ thperating points, see Figures 12-14. The MPP
shroud plus the tuned MPP damper (=back plate aader wave resonators (QWR)), can reduce
the total sound power around 6 dB (A), see Figre 1
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