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SUMMARY 

Methods based on microphone array measurements provide a powerful tool for determining the 
location and magnitude of acoustic sources. For stationary sources, sophisticated algorithms 
working in the frequency domain can be applied. By using circularly arranged arrays and inter-
polating between microphone signals it is possible to treat rotating sources, as are present in 
fans, as being non-moving. Measurements conducted with a four-bladed fan and analyzed with 
the “virtual rotating array” method show that it is not only possible to identify the main noise 
contributors, but also to determine a full spectrum for any rotating component of interest. 

INTRODUCTION 

Microphone arrays as tool for characterizing acoustic sources have become state of the art in many 
fields of application. The principle behind the widely used beamforming algorithms is to shift the 
measured time signals to compensate the sound travel time from a chosen “focus” point to each of 
the microphones. If the focus point contains a source, a summation of the signals will reveal a maxi-
mum; otherwise the signals mostly cancel each other out. 

Beamforming can be done in time domain and in frequency domain. In time domain, the signals are 
directly delayed and summed. In frequency domain, the signals are first Fourier transformed and 
their cross-spectra are averaged. A multiplication of the resulting complex cross-spectral matrix 
(CSM) with steering vectors fulfills the task of phase-shifting the signals according to the focus 
points and subsequent summation. The direct averaging of the cross-spectra has the advantage that 
non-continuous sources are canceled out before the actual beamforming. Furthermore, uncorrelated 
background noise can be accounted for via removal of the main diagonal of the CSM.  

In the case of moving sources, usually a time domain formulation is used, since the distances from 
focus points to microphones constantly change and this time-depending phase-shift cannot be taken 
into account with pre-averaged data, as is the case in frequency domain. The application of time 
domain beamforming on rotating sources was presented by Sijtsma et al. [1] and Minck et al. [2]. 
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Because of the need for oversampling and the necessity to continuously recalculate distances and 
interpolate the signal samples accordingly, the time domain beamforming on moving sources is 
rather time-consuming in comparison to frequency domain beamforming on stationary sources. On 
the other hand, frequency domain beamforming is based on the measured CSM, which makes it 
possible for more sophisticated high-resolution source characterization methods, such as CLEAN-
SC [3], to be applied. Therefore, in terms of computational handling, it would be beneficial to move 
the microphones parallel to the trajectory of the moving sound sources to be able to regard them as 
stationary in the moving reference system. This is usually not physically practicable. However, in 
the case of rotating sources, such as occur in fans, it is possible to take advantage of rotational 
symmetry if the signals are measured with a circular, axially centered array. Lowis and Joseph [4] 
used a Green's function that takes into account source rotation to detect rotating sources in ducts 
with near-field acoustic holography. Pannert and Maier [5] applied this method to inversely deter-
mine a CSM in the rotating reference system from a CSM calculated from signals measured at fixed 
positions. In order to make this Green's function applicable, however, a uniform rotation with a con-
stant angular frequency has to be assumed. As this is not a reasonable assumption when conducting 
measurements on actual fans, this contribution pursues a different approach by approximating a 
rotating array through interpolation of the measured signals according to the momentary angular 
position of the measured object. 

The remainder of this paper is organized as follows. In the theory section a short summary of fre-
quency domain beamforming including CLEAN-SC deconvolution is given and the principle of the 
virtual rotating array is explained. The setup section features a description of the conducted experi-
ment with a four-bladed fan and a circular microphone array. Then the obtained results are pre-
sented and discussed. Finally, the findings are summarized in the concluding section. 

THEORY 

Beamforming and CLEAN-SC 

Considering a grid of �  focus points ��, the frequency domain formulation for the basic delay-and-
sum beamformer is 

�(��) =  	H(��) � 	(��) ,        = 1 …�, 
with the superscript H denoting the Hermitian transpose. The steering vector , which has as many 
entries as number of microphones �  used, comprises the phase shift and amplitude correction to 
“steer” the array to a focus point: 

ℎ� = 1
��,�√� ∑ ��,�−2�

�=1
e−j�(� ,"−� ,0) ,       $ = 1 …� . 

This corresponds to formulation IV in [6]. � is an approximation of the CSM and is obtained by 
averaging the cross-spectra. These are calculated from the windowed and FFT-transformed time 
signals, which are measured by the microphones. Since the auto-spectra do not contain any infor-
mation about phase differences between the signals or any information about the amplitudes that 
isn't implicitly present in other matrix entries, the main diagonal of � can be left out from the 
analysis to reduce errors introduced by uncorrelated background noise from the measurements. 

The beamformer output �(��) can be interpreted as the actual source distribution convoluted with a 
point spread function, i.e. the properties of the beamforming algorithm, together with the chosen 
microphone array geometry, introduce a systematic error that leads to a rather blurred sound map. 

To overcome this problem, several methods have been proposed, with CLEAN-SC [3] being one of 
the fastest algorithms. Its basic working principle is that the algorithm searches for the highest peak 
in the beamformer output and copies its value into an initially empty (clean) map. It then identifies 
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coherent portions and subtracts them from the original (dirty) map, leaving a different maximum. 
This process is then reiterated until no more significant sources are found in the dirty map or a 
maximum number of iterations is reached.  

Virtual rotating array 

The working principle of the present method is to determine the sound pressures at the positions of 
a virtual microphone array which is rotating at the exact same rate as the measured object. These 
virtual signals are based directly on the physically measured sound pressures at the fixed micro-
phone positions for each time sample. Most of the time, this virtual rotating array includes positions 
where no actual microphones are installed. The sound pressures at these positions are therefore 
linearly interpolated between measured sound pressures at neighboring actual microphones.  

Let �  be the number of microphones arranged regularly in one ring and &�() the measured sound 
pressures ($ = 1… �). The angle between each microphone can then be calculated by 

' = 2)
� . 

With the time-dependent angle of the measured object *(), the lower and upper indices of the 
microphone signals between which to interpolate can be calculated via 

$l($, ) = ⌊$ + *()
' − 1⌋  mod � + 1 

$u($, ) = ⌊$ + *()
' ⌋  mod � + 1 , 

with ⌊∎⌋ denoting the floor function. The weighting factors for the respective sound pressures are 

6u() = *()
' − ⌊*()

' ⌋ 

6l() = 1 − 6u() . 
Finally, the microphone signals &vr,� of the virtual rotating array can be calculated: 

&vr,�() = 6l&�l + 6u&�u  . 
With this formulation, the virtual array can be kept synchronized with the rotation of any object on 
the same rotational axis, provided the angular movement of that object *() is logged with suffi-
cient detail. The CSM for the virtual rotating array is calculated equivalently to the stationary case.  

It should be kept in mind that, when using a rotating array (physical or virtual), the medium be-
tween microphones and sources usually does not rotate with the same angular velocity and therefore 
in the rotating reference system is not resting, but rotating itself. For the application of beamform-
ing, a sufficiently precise model of the retarded times, i.e. the sound travel times between assumed 
source positions and microphones, is necessary, and ignoring the rotating medium will lead to 
inaccurate results. However, to calculate the retarded times for each sample with an arbitrarily 
changing angle *() is computationally very costly, as this cannot be done analytically. For the pur-
pose of this paper, therefore, it is assumed that the angular velocity changes little enough for the 
retarded times to be considered constant and calculated with sufficient precision using the mean an-
gular velocity. 

The virtual rotating array method can easily be extended for the use of several rings of microphones 
if necessary. As is shown in this contribution, results obtained with only one ring are already ac-
ceptable. 
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SETUP 

Measurements were performed on a four-bladed common household fan with a diameter of 0.4 m. 
The fan was primarily chosen for its distinctive and simple geometry as well as its noisiness rather 
than its aerodynamic efficiency. The blades consist of flat metal sheets with slanted trailing edges. 

 

 

Figure 1: Fan used for the measurements. Fan with microphone array (only the inner ring of microphones was used). 

 

The microphone array consists of 32 microphones arranged circularly in one ring, which was 
positioned parallel to the fan (figure 1). Important measurement and data processing parameters are 
summarized in table 1. 

Three operating cases of the clock-wise rotating fan were evaluated for this paper: 

• the fan rotating at 1315 rpm 

• the fan at 1150 rpm with an applied obstacle on one blade (see figure 2) 

• the backwards mounted fan (trailing edge as leading edge) at 1366 rpm 

 

The flow direction was towards the microphone array, except for reversed installation, where the 
direction of the generated flow was not very distinct. Other than the mounting of the fan, there were 
no obstacles in the flow. The array itself is constructed in such a way that the flow can pass through 
its center without disturbance. No acoustic absorbers were used, but since the fan axis is 1.5 m 
above the ground and the experiments were conducted in a hall approximately 6 m high, the influ-
ence of reflections can be neglected.  

In order to track the rotational movement of the fan, a laser reflector was applied to one fan blade, 
so that one trigger could be logged per revolution. The trigger signal was recorded parallel to the 
microphone signals. The angles corresponding to each sample were calculated in post-processing 
using a spline interpolation of the known positions at the trigger instants. 
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Table 1: Measurement and data processing parameters 

Number of microphones 

Diameter of ring array 

Distance from fan to array plane 

Measurement time 

Sampling frequency 

FFT block size 

FFT window 

Resolution of focus grid 

CLEAN-SC max. iteration no. 

32 

0.8 m 

0.4 m 

40 s 

51.2 kHz 

4096 samples 

Hanning 

0.01 m 

500 

 

 

 

Figure 2: Fan with applied disturbance (ball type cable tie) at the trailing edge of the blade at 6 o'clock. 

 

 

Figure 3: Schematic of the fan with assigned integration sectors.  
Shades of red: leading edges, shades of green: trailing edges. 
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RESULTS 

Sound pressures were calculated on a cylindrical grid, enveloping the fan with a grid depth of 
0.04 m. The grid points are evenly distributed, with a resolution of 0.01 m. For display, the values 
were summed in axis-direction. Sound maps for the three measured cases are shown in figure 4. 
Each map shows the reconstructed sound pressure levels at the focus points, evaluated for a third-
octave band with the designated band center frequency, in a 10 dB range including the occurring 
maximum level. 

In case of the fan rotating at 1315 rpm, the maps indicate that for higher frequencies the main 
sources are more and more found towards the trailing edge and the tip of the blades, where the 
turbulent separation at the sharp trailing edge seems to be the dominant noise generating 
mechanism. At 4000 Hz, the main source region spans about half the trailing edge of the blades. At 
2000 Hz and below, the major sources are detected on the broadest part of the blade.  

With the cable tie applied on the lowermost blade's trailing edge (center column in figure 4), noise 
is generated not only at the disturbed blade, but also at the following blade. The fact that this 
phenomenon is most distinctive at the 800 Hz band suggests that mostly larger turbulent structures 
caused by the impeding body interact with the leading edge of the following blade. 

When mounting the blades facing the wrong way, the flow detaches at the (non-intended) leading 
edge, generating noise at the outer leading and trailing edges (best visible at 4000 and 10000 Hz). 

In order to quantitatively evaluate the emitted noise spectra at the leading and trailing edges, the 
calculated sound pressures at locations inside the according areas, indicated by the red and green 
polygons in figure 3, were summed for each frequency band. 

Figures 5, 6 and 7 show the integrated spectra for the measured cases. The bold lines in red shades 
and the thin lines in green shades represent the spectra at the corresponding bordered areas shown in 
figure 3. 

For the pure fan, rotating at 1315 rpm (fig. 5), all blades show approximately the same spectra, with 
more variation at the leading edges below 1000 Hz. It can be seen that the sound pressure levels at 
the trailing edges are always higher than those at the leading edges, which confirms the former to be 
the main source of noise radiation. The spectrum at the trailing edge is also rather broadband, with a 
not very sharp maximum at 2000 Hz. 

When applying an impeding body (fig. 6), the spectra paint a different picture. The trailing edge of 
the 6-o'clock blade (light green curve) radiates at higher levels than all other blades, especially 
above 4000 Hz. On the other hand, the leading edge of the subsequent 3-o'clock blade (dark red) is 
rather loud in comparison to the other blades as well, even exceeding the level of the impeded 
trailing edge at 1000 Hz and below. 

The spectra of the measurements of the reversely mounted fan are plotted in figure 7. Here, the 
slanted portions of the blade are the leading edges and play the dominant role in noise generation. 
Furthermore, the overall noise emission, in particular at frequencies below 5000 Hz, is much higher 
than in case of the correctly mounted fan. 
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1315 rpm 1150 rpm, with impediment 1366 rpm, reversed mounting 

800 Hz 800 Hz 800 Hz 

   

2000 Hz 2000 Hz 2000 Hz 

   

4000 Hz 4000 Hz 4000 Hz 

   

10000 Hz 10000 Hz 10000 Hz 

   

Figure 3: CLEAN-SC sound maps for a clock-wise rotating fan using the virtual rotating array method. The results of 
three different measurement cases (columns) are evaluated at exemplary third-octave bands (rows), all values in dB.  
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Figure 5: Leading and trailing edge spectra for the fan at 1315 rpm. 

 

 

Figure 6: Leading and trailing edge spectra for the fan with applied impeding body at 1150 rpm. 

 

 

Figure 7: Leading and trailing edge spectra for the backwards mounted fan at 1366 rpm. 
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CONCLUSION 

A method for the assessment of rotating sources has been presented. The algorithm calculates 
interpolated sound pressures based on the synchronized rotation of a virtual array. This procedure 
allows the application of sophisticated source characterization methods that are otherwise only 
available for stationary sources. 

The virtual rotating array method has been successfully tested on a common household fan in 
different configurations. Even though the existing flow field was not taken into account for this 
analysis, the presented results allow drawing deductions concerning the occurring source 
mechanisms. 
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