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SUMMARY 

The proposed paper deals with the analytical modeling of the noise generated by rotor wakes 
impinging on a row of outlet guide vanes in a ducted subsonic axial-flow fan architecture. The 
present analytical approach is believed a consistent alternative to numerical methods, especially 
at the early design stage. The analytical modeling consists in convecting a wake model through 
the stator and applying a mode-matching technique on its interfaces to determine the generated 
acoustic waves. This original technique allows introducing simply the cascade effect in a two-
dimensional unwrapped representation of the stator in Cartesian coordinates. Its interest is that it 
can be easily transposed to a three-dimensional annular cascade in cylindrical coordinates.  

 

INTRODUCTION 

Axial-flow fan stages, such as the small-size ducted fans used in air-conditioning systems for 
aircraft or similar technology, are made of a rotor operating with a downstream row of stationary 
outlet guide vanes (stator).  The duct diameter is generally small (around 20 cm) and the rotational 
speed quite high, leading to a blade-tip Mach number about 0.3. The numbers of rotor blades and 
stator vanes are quite large, typically between 10 and 30. This makes sound propagation in the duct 
take place at relatively high frequencies for which numerous higher-order modes are to be taken 
into account. The wakes issued from the rotor impinge on the vanes, inducing unsteady loads which 
radiate as equivalent dipoles according to the general background of the acoustic analogy. This 
mechanism is referred to as wake-interaction noise. It includes tonal noise at multiples of the blade-
passing frequency (BPF) associated with the periodic velocity deficit in the wakes and broadband 
noise associated with wake turbulence. Both contributions need being modeled with a reasonable 
accuracy and at reasonable computational cost for the sake of low-noise design. Modern 
computational resources make the tonal noise modeling more and more tractable using numerical 
methods, such as Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations. But 
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simulating resolved turbulence is much more difficult, on the one hand, and even the numerical 
simulation of periodic phenomena remains expensive, on the other hand, especially at the 
preliminary design stage when numerous configurations must be tested in optimization algorithms. 
This is why the analytical modeling approach described in the present work is believed an attractive 
alternative.  

Analytical modeling requires drastic approximations on the geometry and on the flow features in 
order to produce closed-form solutions of interest for engineering purposes. Most often the vanes 
are assimilated to rigid flat plates of zero thickness embedded in a uniform mean flow. The simplest 
strategy is to determine the fluctuating lift forces on the vanes with linearized isolated-airfoil 
theories and then to make the forces radiate. This two-step approach neglects the so-called cascade 
effect, expectedly dominant for the aforementioned large numbers of vanes. The cascade effect is 
defined as the effect of adjacent vanes on the aerodynamic and/or acoustic response of one of them. 
Because the exit flow from the stator must be axial, the vanes are moderately cambered and inclined 
at the leading edge, and nearly parallel to the axis at the trailing edge. As a result they have a large 
overlap and quite high solidity (see Fig. (1)-a).  

In the present 2D approach, to be considered as a preliminary investigation, the stator is unwrapped 
and represented by an infinite linear cascade of parallel, axially aligned and zero-stagger plates  
(Fig. (1)-b). The inter-vane channels are considered as a periodic array of bifurcated waveguides 
with rigid walls. The same problem could be solved exactly using the Wiener-Hopf technique, as 
shown by Glegg1 and readdressed by Posson et al2. This technique can be extended to a cascade of 
staggered plates but it cannot be equivalently formulated for an annular cascade. In contrast the 
present mode-matching technique, partially addressed in a previous work by Ingenito & Roger3, can 
be transposed easily in a cylindrical coordinate system to address the configuration of an annular 
cascade. But it is not suited for an application to staggered vanes. Therefore, till some generalized 
statement is available, the technique will be attractive as long as the cascade effect is dominant and 
the stagger effect of secondary importance. This is why it is expected to produce realistic estimates 
for broadband noise wake-interaction noise, as a result of the averaging inherent to statistical 
approaches. Yet the formalism allows addressing tonal noise as well. 

The following sections detail the analytical formulation of the mode-matching technique applied to 
the impingement of aerodynamic wakes on the stator vanes. The wake model, the matching 
equations and sample results are presented. This enables to understand the solving procedure and 
provides physical insight into the scattering mechanism of the hydrodynamic waves into sound at 
the leading-edge and trailing-edge interfaces of a stator. 

 

MODE-MATCHING PRINCIPLE 

The flow is considered as non-viscous and isentropic. The fluctuations of velocity, pressure and 
density are solutions of the linearized Euler equations. The mean velocity is axial and uniform, of 
subsonic Mach number �. All other mean-flow quantities are also constant. 

When an oblique incident wave impinges on the front interface of a set of bifurcated channels, the 
induced azimuthal phase speed along the interface4 is reproduced in the reflected and transmitted 
waves to ensure the continuity of the acoustic field. Figure (1) shows a typical annular stator 
configuration with zero lean and sweep, and a two-dimensional unwrapped representation of the 
vanes for a cut at radius � = ��. � = 2	π	��/� is the inter-vane distance, � is the number of vanes. 
An unit oblique incident wave is specified as 	e
����
���
����, where ��	is the axial wavenumber 
and ��	the azimuthal wavenumber. The 2π-periodicity on the variable � = �/��	implies that 2π�� = ���� or ���� = �� where �� =	2π ��⁄  is the azimuthal wavelength. The reflected waves 

of the form e
���	�	–	�� 	�	–	�� 	�! must satisfy the same condition: ��" 	�� 	= 	 ��" . The continuity of the 
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azimuthal phase speed imposes that the phase-shifts between two points in the � direction are the 
same for all waves. For the incident and the reflected waves, they are respectively given by e���#$	%&�/'� and	e���#$	%& �/'	�, so that	��" 	= 	 �� 	( 	)�, +��, ), ∈ 	.. The same condition applies to 
the transmitted duct wave for which a phase-shift between adjacent channels must be equal to e�#$	%&/'. 

 

 

  

(a) (b) 

Figure 1 - (a): Typical stator architecture. (b): 2D unwrapped representation of the stator 

 

In the mode-matching technique, the leading-edge and trailing-edge cross-sections of the stator are 
considered as interfaces at which fluctuating physical quantities are matched to satisfy the basic 
conservation laws of fluid dynamics. The same principle holds in the original cylindrical 
coordinates (Fig. (1)-a), as long as all points of a vane edge are approximately contained in the 
same cross-section, or in a Cartesian unwrapped representation (Figs. ((1)-b, 2)).  

 

 
Figure 2 - 2D unwrapped representation of the rotor-stator stage, considered as a bifurcated waveguide system 
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In general configurations, when the mean-flow quantities have constant but different values on both 
sides of the interface, jump conditions are expressed on the mass-flow rate and on the total enthalpy 
(Roger et al5). In the present study the mean flow is assumed uniform and identical on both sides 
and the general conditions can be shown to reduce to the continuity of fluctuating pressure and axial 
velocity. These are classical conditions for the transmission of acoustic waves in axial bifurcated 
waveguides. But because the linearized equations of gas dynamics for a homogeneous base flow 
coincide with the convected wave equation they hold also when formulating the acoustic response 
of an interface to impinging vortical and pressure-free disturbances. 

 

APPLICATION TO WAKE IMPINGEMENT ON A STATOR CASCADE 

Wake Modeling 

Incident Wakes 

The mode-matching technique applied to wake-interaction modeling requires first the definition of 
the periodic wake velocity deficit induced by the rotor blades on the stator. This incident 
perturbation is assumed frozen, incompressible and pressure-free, convected by the mean flow. In 
the absence of more accurate description, the wake velocity deficit is consistently assimilated to a 
Gaussian function, the parameters of which could be tuned from inspection of the velocity triangle. 
The Gaussian wake profile was proposed by Reynolds et al6. The excitation of the stator front face 
by the periodic wake pattern is reproduced by summing an infinite series of time Gaussian pulses: 

0�1� = 0� 	 2 e
34�
�56 78 = 2 0%e�%9:�;<
%=
<

;<
�=
<  (1) 

where	> = ln 2, 0� is the velocity deficit on the wake centerline, A = B	/	�Ω��� is the half-time of 
the impulse due to a single wake passage, B is the half-width of the wake profile and D is the wake 
passing period corresponding to the wake passing frequency EΩ/�2π�. The spectrum of the wake 
harmonics decreases with a Gaussian envelope. Furthermore, using the relation �	 = 	 ���Ω1�, and 
accounting for the convection, the wake velocity deficit becomes: 

0�F, �� = 2 0%e�4%9G&7�e�4%9:H� 7�		,												0% = 0�EB2π�� Iπ> J
�%9K�8L3G&8 			.;<
%=
<  

           

The axial projection of these perturbations is written as: 

0��F, �� = sin	�OP� 2 0%e�4%9G&7�e�4%9:H� 7�	,				F ≤ 0;<
%=
<%S�

 (2) 

The term of order zero must be discarded since it contributes to the non-radiating steady loading on 
the vanes.  Each contribution of order � produces sound at the corresponding multiple of the blade-
passing frequency. 

Vortical Waves in the Bifurcated Waveguides 

This section deals with the transmitted hydrodynamic (vortical) waves in the inter-vane channels. 
Their definition has to be consistent with the axial convection of the wakes, the rigid-wall condition 
and the phase-shift between adjacent channels. For any value of	�, the axial velocity of the vortical 
field in the channel of index T is written as a sum of modes: 
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UVW. X = 2YZ[
;<
Z=� cos ^_π� �� − T��a e�4%9:H� 7�	,				0 ≤ F ≤ b (3) 

Adjacent inter-vane channels are phase-shifted by e�c with	d = 	2π�E/�. If YZ� stands for the 
modal coefficient in the reference channel	�T = 0�, YZ[ = YZ�e�[c  is the coefficient in the channel 
of index	T.  

Chu and Kovásznay7 showed that the acoustic and vortical modes of fluctuation in an isentropic gas 
remain uncoupled in a linearized theory, provided that the base flow is homogeneous. As a 
consequence, both develop independently, except at physical boundaries where they couple. In the 
present case the coupling occurs on the stator vanes, in the sense that the acoustic potential fields 
combine with the hydrodynamic field via the rigid-wall boundary condition. The aforementioned 
modal expansion automatically fulfills that condition so that the formulation of the coupling is 
displaced to the interface.  

As a result of the Euler equation, the rotational of the hydrodynamic velocity field is conserved 
through the interface. This is used to determine the amplitudes of the hydrodynamic channel modes. 
Moreover, the divergence of the hydrodynamic modes is zero, which provides a relationship 
between the azimuthal and axial velocity components. The velocity field of the incident gust for any 
value of � and T = 0 reads 

UeW = f sin	�OP�0%e�4%9G&7�e�4%9:H� 7�	X−g��h� sin	�OP�0%e�4%9G& 7�e�4%9:H� 7�	i, F ≤ 0 (4) 

 

and the velocity field in the inter-vane channel is  

UVW =
jkl
km 2YZ�

;<
Z=n cos o_π� �p ei4%9:H� 7�	X

2−i�Eg�_πh� YZ�
;<
Z=n sin o_π� �p ei4%9:H� 7�	i , 0 ≤ F ≤ b (5) 

 

Matching both expressions of the rotational at the leading-edge interface located at F	 = 	0, the 
following equation is found : 

i�E ^h�# ( ��#Ω#��h�# a sin�OP�0%e�4%9G&7� =	2qoi �Egh� p# �_π − _π� 	r YZ�
;<
Z=n sin o_π� �p e�4%9:H� 7�	

 (6) 

 

Multiplying both sides by sin�s$t ��,	 u ∈ 	., integrating with respect to � from 0 to � and taking 

advantage of the orthogonality property of the modes leads to the infinite set of equations  

i�E ^h�# ( ��#Ω#��h�# a sin�OP�0%Ψ%9s = qoi �Egh� p# �uπ − uπ� 	r Ys� π� ,				u = 1,… ,yu (7) 

with       Ψ%9s =	 s'q�
n�z{|}~8�� 
nr
#o�%9�8
4z�8 78p 			if 		�E ≠ s'# ,																		Ψ%9s = �$' 		if 		�E = s'#  
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Thus the modal amplitude of a transmitted hydrodynamic mode is obtained as  

Ys� =	 i�E oh�# ( ��#Ω#��h�# p sin�OP�0%Ψ%9s
�4i �Egh� 7# �uπ − uπ� 	� π�  (8) 

 

Finally the hydrodynamic wave downstream of the stator is assumed the same as upstream, so that 
its axial velocity for a given value of � is written as 

U5W. X = E%e�4}~�&7�e�4}~��� 7�	,			b	 ≤ F  where		E% = sin	�OP�0% (9) 

 

A more refined statement paying deeper attention to the way of implementing a Kutta condition at 
the trailing-edge interface will be addressed in a future work. 

 

Definition of the Acoustic Potentials 

The acoustic potentials are solutions of the convected Helmholtz equation: 

∆� − 1b�# D#�D1# = ∂#�∂�# ( �1 − �#� ∂#�∂F# ( 2i�%�∂�∂F ( �%#� = 0, 			�% = �EΩb� , (10) 

 

where the convective derivative is: DD1 = ∂∂1 ( �.�	 
Four acoustic fields are produced by the interaction : the “reflected” and the “transmitted” fields (so 
called because of the upstream/downstream propagation, by identity with the problem of the 
diffraction of an incident acoustic wave) in the unbounded domains, referred to as �P and ��, and 
those in the inter-vane channels referred to as �c and �� for upstream and downstream propagation 
directions, respectively (Fig. (2)). The reflected ��P� and the transmitted ���� potentials admit a 
Floquet space-harmonic representation8. For the wake harmonic of order � the upstream free-field 
potential reads 

�P =	 2 ��e�����e����� �,				F ≤ 0;<
�=
<  (11) 

with 

�P� = �E ( )��� , �P�
 = −��% −	��%# − O#�P�#O# , � = h�b� , O = �1 − �# 

The transmitted acoustic potential D is written as  

�� =	 2 DPe�����e����� �,				b	 ≤ F,;<
P	=
< 			��� = �E ( ���� , ���; = −��% (	��%# − O#���#O#  (12) 
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Both reflection and transmission occur on a set of azimuthal modes which correspond to oblique 
plane waves in the unwrapped representation. The reflected and transmitted fields result from the 
modulation of the incident perturbations by the periodicity of the � vanes, according to orders 
selected by Tyler & Sofrin’s rule9 �E	– 	)�, )	 ∈ 	.. 

The upstream and downstream acoustic potentials in the inter-vane channels can be written as  

��[ =	2���e�[c cos 4�π� �7 e����� � , 0 ≤ F ≤ b, ���; = −��% (	��%# − O# 4�π� 7#O# 		;<
�=�  (13) 

�c[ =	2� �e�[c cos 4¡π� �7 e��¢£� �;<
 =� , 0 ≤ F ≤ b, �c£
 = −��% −	��%# − O# 4¡π� 7#O#  (14) 

 

where T refers to the Tth inter-vane channel. By virtue of the vane-to-vane phase-shift the problem 
of the determination of the acoustic potentials only needs being solved for the reference channel 0. 

 

Matching Equations 

The continuity of the fluctuating pressure and axial velocity is imposed on both interfaces of the 
stator. Two sets of matching equations can be written at F = 0 and	F = b. The relations between 
acoustic potential, pressure and velocity are: 

�t¤ =	−¥� o∂�∂1 ( �.��p , U¦§ = 	�� (15) 

For clarity, we consider a vector ¨ gathering pressure and axial velocity. Its indices denote the 
incident (©), reflected (�), transmitted (D), downstream channel (�) and upstream channel (�) 
hydrodynamic (ℎ) and acoustic (�b) waves. 

 ̈�F, �� = ^ �t¤�F, ��«�t¤�F, �� ( «�W�F, ��a , ¡ = ©, �, D, �, � (16) 

For any value of the wake harmonic � and the channel		T	 = 	0, the continuity of pressure and axial 
velocity is imposed at the leading-edge interface (F = 0) and the trailing-edge interface (F = b). 
The matching equations read: 

ë	�0, �� (	 G̈�0, �� = 		 V̈�0, �� (	 ¬̈�0, ��, ∀� 

V̈�b, �� (	 ¬̈�b, �� 	= 	 5̈	�b, ��, ∀� 

(17) 

(18) 

 

These equations involve four unkown generic variables (®, ¯°, ±°, ²) and four matching 
equations. A global matrix inversion method could be used with a proper truncation but it might not 
be the best suited because of conditionning issues. 

 

Iterative Method for Multiple Matching 

The two sets of equations can be solved by an iterative procedure which has the interest of 
following the onset of the acoustic response to the hydrodynamic wave. The incident wakes 
impinging on the leading-edge interface generate upstream (reflected) and downstream 
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(transmitted) acoustic potentials (�P) and (���). The latter is partially reflected by the trailing-edge 
interface, generating the upstream guided field (�c�) and the transmitted field (��) downstream of 
the stator. Back-and-forth acoustic waves develop this way in the bifurcated waveguides until 
convergence. Two steps are required : 

- Initialization �³ = 0� 
ë	�0, �� ( G̈��0, �� = 	 V̈��0, ��, ∀� V̈��b, �� (	 ¬̈��b, �� 	= 	 5̈	��b, ��, ∀� 

(19) 

(20) 

- Iterative process �³ > 0� 
ë	�0, �� ( G̈µ�0, �� = 	 V̈µ�0, �� ( ¬̈µ
n�b, ��, ∀� V̈µ�b, �� (	 ¬̈µ�b, �� 	= 	 5̈	µ�b, ��, ∀� 

(21) 

(22) 

In the initialization step, Eqs. (19) and (20) are solved without upstream wave (vector ±°=	°). Then  
Eqs. (21) and (22) are solved using the modal coefficients from the downstream channel wave 
(vector ̄ °) as input. This provides a first estimate of all modal coefficients. The iterative process is 
continued until all coefficients	®,	¯°, ±° and	² are converged. At every step in this procedure, only 
two vectors of coefficients (®,	¯°� or (±°,	²) have to be determined for each interface, which 
makes the solving easily achievable.  

 

Modal Projection 

An usual way of solving the matching equations is to use modal projections. This is illustrated here 
for the leading-edge interface (F = 0�. Multiplying each equation by	cos	�s$t ��, 	u ∈ 	. and 

integrating with respect to � from 0 to � leads to the infinite sets of equations: 

o Continuity of the pressure 

2 ��% − �P�
�!��Λ���G&s;<
�=
< = 4�% − ��z; �7�s� π� �1 ( δs,�!	( 4�% − �cz
 �7�s� π� �1 ( δs,�! (23) 

o Continuity of the axial velocity 

sin�OP�0%Λ%9s ( 2 i�P�
��Λ���G&s;<
�=
< = i��z; �s� π� �1 ( δs,�! ( i�cz
 �s� π� �1 ( δs,�! ( Ys� 	π� �1 ( δs,�! (24) 

where 

Λ�¸s = i�¹�� �1 − �−1�se�#$' �¸	�
���¹���# − 4u�2 7#� 	 , �¹ ∈ ��P� , �E�� � , u = 0, 1, … ,ys 

δs,� stands for the Kronecker symbol. The projection enables to isolate one coefficient in one (or 
two) infinite sums. Truncating the sum to the order º and recombining the two projected equations 
in order to eliminate the modal coefficients ¯° leads to a linear system: 

 +»,+®, = +»°, (25) 

Δ�u, )� = 	Λ���G&s 	½ ��% − �P�
�!4�% − ��z; �7 − �P�
��z; ¾ 



FAN 2015   9 
Lyon (France), 15 – 17 April 2015 

Δ��u� = �s� π�	�1 ( δs,�! ½4�% − �cz
 �74�% − ��z; �7 −	�cz
��z; ¾ (	 1i��z; ¿sin�OP�0%Λ%9s − Ys� 	π� �1 ( δs,�!À 
u = 0, 1, … ,ys; 		) = −º,… , 0, 1, … , º	 ® is the vector of the modal coefficients of the “reflected” waves, of size 2º ( 1. This equation is 

then solved by matrix inversion. Then, the modal coefficients for the downstream channel waves ¯° are expressed from ® : 

Â�s�Ã = 	 �i��z	; π� �1 ( δs,�! Ä 2 i�P�
��Λ���G&s;<
�=
< −	i�cz
 �s� π� �1 ( δs,�!		 )Å��OP�0%Λ%9s 						

( 																														(	sin�OP�	0%Λ%9s �1 ( δs,�! 			− Ys� 	π� �1 ( δs,�!Æ (26) 

The same procedure is applied for the trailing-edge interface. 

RESULTS 

Rotor-Stator Interaction 

Typical results are reported in Figs. (3) and (4). Only the first Fourier component of the incident 
wake pattern is considered. It corresponds to the Blade Passing Frequency (BPF) of the rotor.  

  

(a) (b) 

Figure 3 - (a): Typical pressure field generated by wake impingement on the front face of a finite-chord stator 
cascade, at the BPF. Upstream and downstream emissions of an oblique wave (cut-on). Full unwrapped annulus. 

(b): Modal amplitudes |R| and |T|. Blue (red) bars denote cut-on (cut-off) modes. 

 

The plotted quantity is the instantaneous pressure, shown for qualitative illustration. The incident 
wakes travelling upwards have no trace in terms of pressure. The parameters of the system are E = 23, � = 17, Ω	 = 	11000	rpm,	h� 	= 	20		m/s,	OP = π/6	and b	 = 	0.2 m. The non-realistic 

ΓR ΓT 
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value of the chord is chosen to illustrate the acoustic propagation in the channels. The rotor-stator 
system (E = 23, � = 17, Fig. (3)) emits upstream and downstream propagating oblique waves in 
the annular duct. These waves correspond to the dominant co-rotating mode �Í = 23 − 17 = (6  
of phase speed	23	Ω	��/6 expected from Tyler & Sofrin's rule. A plane-wave mode is transmitted 
and reflected in each inter-vane channel, with a phase shift between adjacent channels that 
reproduces the same  �Í = 6  periodicity as for the upstream mode.  

  

(a) (b) 

Figure 4 - (a): Typical pressure field generated by wake impingement on the front face of a finite-chord stator 
cascade, at the BPF. Condition of total cut-off upstream and downstream emissions. Full unwrapped annulus. 

(b): Modal amplitudes |R| and |T|. Red bars denote cut-off modes. 

 

For the rotor-stator system �E = 17, � = 	23,	Fig. (4)) at the first BPF, the interaction generates the 
dominant mode	�Í 	= 	17 − 23	 = 	−	6. This mode is contra-rotating, which means that the phase 
speed −17Ω	��/6 is downwards on the plot. In this case there is no oblique upstream and 
downstream propagation. The amplitude of the mode is exponentially attenuated from the 
interfaces, with axially aligned pseudo-wavefronts. This corresponds to a cut-off mode. In contrast 
the plane-wave mode is again transmitted and reflected back and forth in the inter-vane channels 
with a phase-shift between adjacent channels. The tangential phase speed along the interface is 
supersonic in the first case (Fig. (3)) and subsonic in the second case (Fig. (4)), with respect to the 
fluid.  

 

Parametric Study: Vane Chord Variation 

The effect of the vane chord variation on the radiated acoustic power is illustrated in Fig. (5). The 
chord (b = 0.2	m) is increased by one centimeter. The rotor-stator configuration (E = 23, � = 17� 
which emits propagating oblique waves is considered. All parameters remain the same. The 
acoustic powers ÎZ , �_ = �, D� per unit span of the upstream and downstream waves of 
potentials	�P , �� respectively, are defined as10  

ΓR ΓT 
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ÎG =	Ï����%2 2 �P�ÐÐÐÐ	|��|#;<
�=
<¤c�
Ò%	[Ò�Ó�

,			�P�ÐÐÐÐ = 	��%# − O#�P�	# 		
Î5 =	Ï����%2 2 ���ÐÐÐÐ	|DP|#;<

P=
<¤c�
Ò%	[Ò�Ó�
,			���ÐÐÐÐ = ��%# − O#���	#  

 

(27) 

 

 

(28) 

 

where Ï� = ¥�b� is the acoustic impedance of the fluid. 	�P�ÐÐÐÐ, ���ÐÐÐÐ are respectively the propagative 

parts of the axial wavenumbers of the upstream and downstream waves. Only the cut-on modes 
carry energy and contribute in the expression of the acoustic power. 

  

(a) (b) 

Figure 5 – Effect of a chord variation on the upstream (dashed), downstream (dotted) and total (solid) radiated 
acoustic powers per unit span. (a): at the BPF (n=1), (b): at 2 BPF (n=2) 

 

Figure (5) shows a nearly periodic variation of the acoustic power with increasing chord length. 
Between Fig. (5)-a (BPF) and Fig. (5)-b (2 BPF), the period of the variation is divided by two. 
These periods are approximately equal to the axial hydrodynamic wavelength: 

�W = 2πh��EΩ  (29) 

 

At the BPF and 2 BPF, the axial hydrodynamic wavelengths are �W�� = 1� = 4.7 mm and  �W�� = 2� = 2.4 mm. The variation denotes a resonance effect driven by the relative phases of the 
hydrodynamic waves at both interfaces. Figure (5) shows that the acoustic radiation generated by 
the impact of a hydrodynamic wave on a stator is dependent on the ratio between the chord length 
and the axial wavelength of the wake perturbations. 

 

 

�W�� = 1� �W�� = 2� 
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CONCLUSION AND FUTURE WORK 

An original mode-matching technique dedicated to the modeling of wake-interaction noise 
production in an axial-flow fan stator vane row has been described in the paper. The technique 
allows simply accounting for the cascade effect of adjacent vanes. In addition to classical matching 
equations of acoustics involving the continuity of axial velocity and pressure, a specific 
conservation equation for the vorticity is considered. The preliminary implementation and first 
results in a two-dimensional unwrapped reduction of the stator confirm that it is relevant for an 
efficient prediction of the sound. The sound waves are directly expressed in a modal form from a 
modal expansion of the wake disturbances, without intermediate step. In particular the model 
provides a direct way of illustrating the cut-on and cut-off waves produced by wake interactions 
according to Tyler & Sofrin’s rule. The other interest is that the approach could be declined in a 
three-dimensional annular cascade in cylindrical coordinates, which will be addressed in a future 
work. It will also be declined in a statistical approach to formulate the broadband noise associated 
with wake interactions.  
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