

HVAC for buildings (Howden)

Multi purpose (Ziehl Abegg)

	Unsteady CFD-Methods		•••000 26 N12 081 A
 Copyright 2012 Institut für Fluid- und Thermodynamik - Universität Siegen 	 Direct Numerical Simulation (DNS): Basic equations are solved without any additional models Solution contains the acoustic field High numerical costs ~ Re³ 		
	 Large Eddy Simulation (LES): Filtering of the basic equations Large scales are solved directly The numerical costs are still high ~ Re^{1.4}. 		E(k)
	 Unsteady Reynolds Averaged Navier-Stokes Simulation (URANS): Ensemble averaging of the basic equations Turbulence completely modeled The numerical costs are independent of Re 		
		ĸ	

	6. Summary and Conclusions		•••• 51 N12 081 A
	*	Aeroacoustic noise sources in low Ma number fans are flow induced	d forces
ität Siegen	*	Several principle mechanisms can be identified, such as spatial nor inflow, turbulent ingestion, blade self noise, tip clearance flow, etc.	-uniform
namik - Univers	*	Noise prediction methods range form simple correlations (class I) to computational aeroacoustics (CAA) methods (class III)	complex
d- und Thermody	*	Confirmation of the classical rule: High fidelity acoustic prediction re excellent source data, e.g. the unsteady flow field in realistic fan as	quires semblies
rt 2012 Institut für Flui	*	Experimental flow field data: Unsteady velocities and pressures; serve either as empirical data in semi-empirical (class II) models or validation (class III models)	for
Copyrigh	*	Three examples of fan noise projects illustrate methodologies	
0	*	Understanding of mechanisms is first step of noise reduction measu	ires!