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SUMMARY 

Sound absorption by a duct lining or an impedance wall is most effective in the medium 
frequency range. The attenuation spectrum tails off at both low- and high-frequency extremes. 
This study investigates, theoretically, the absorption of high frequency, high circumferential 
order rotor noise by a microperforated panel with an axially distributed cavity depth, porosity 
and aperture diameter. The wave equation is solved in the frequency domain with the 
Chebyshev collocation method. It is shown that a passive absorber with such an optimized 
property can greatly enhance the absorption performance. In a typical example given, the 
optimization gives more than 4 dB extra attenuation per unit distance equal to the rotor radius. 

NOMENCLATURE 

mnA   modal amplitude of point source at sr r=  

0c   speed of sound in air 

d   aperture diameter in micro-perforated panel 
* * *

0/tipf f r c=  frequency normalized by * *
0/ tipc r  (asterisks indicate dimensional) 

12f   12 discrete frequencies defined in Eq. (17) 

ch   cavity depth behind micro-perforated panel or interface at tipr r=  

1i = −  imaginary number 
IL  insertion loss in dB 

,r xI I   radial and axial sound intensity 

1rI   radial intensity normalized by nominal local sound energy flux, Eq. (14) 

j   integer (index) 

, ,mn xmnk k k  wavenumber, modal wavenumber and axial wavenumber 

K  ratio of aperture diameter to boundary layer thickness, Eq. (3) 
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rL   sound attenuation in dB per unit distance equal to rotor tip radius tipr  

, ,U M DL L L  upstream, middle and downstream domain lengths 

, , /m n n∂ ∂  indices of circumferential and radial modes, normal derivative 

rN   number of Gauss-Lobatto mesh segments 

0 /p tρ φ= − ∂ ∂  sound pressure and its relation with velocity potential φ  

, ,hub tipr r r  radius, hub and tip radii 

R  resistance component of impedance Z 

sr   point source radius 

nSPL   sound pressure level for the nth radial mode 

t   time (normalized by * *
0/tipr c ) 

TL  transmission loss in dB 

pt   panel thickness 

, , ,in ref abs exW  sound power at incidence, reflection, absorption and exit 

Z  acoustic impedance, ( )0 0/ /p c rρ φ∂ ∂  

 
,α β   absorption and reflection coefficients of sound 

η   air viscosity 
φ   velocity potential 

2 fω π=  angular velocity 

0ρ   air density 

μ   number of terms in the Chebyshev series for the distributed wall property 
σ   panel perforation ratio (porosity) 
θ   angular coordinate 
Ξ   pseudo-derivative operator, Eq. (7) 
 

( )
Subscripts     -     0 :  air;   :  cavity;   :  microperforated panel;   : leading edge

Superscripts  -     *: dimensional variables;  (in): incident wave;  :  scattered

c mpp LE

s
 

 

1. INTRODUCTION 

Passive control is a preferred engineering solution for many noise problems including fan noise. 
This study explores the use of distributed duct wall property to control the high frequency fan noise 
with high circumferential mode index. Duct noise control finds many applications in engineering, 
ranging from central ventilation noise in buildings, engine inlet and exhaust noise in turbomachines 
(Blake 1986), motor vehicles (Munjal et al 2006), as well as in aircraft engines (Hubbard 1995). In 
an engine, the main aerodynamic noise source is often the interaction between rotor blades and 
stators, for which a spinning pressure pattern (Tyler & Sofrin 1962) causes dipole noise to radiate to 
the two sides of the blades. With a special interest in aeroengine noise, we focus on circular ducts 
with a high order of circumferential mode, m, while the potentially strong effect of high-speed flow 
is temporarily set aside. The question we ask is whether a distributed passive wall property can 
absorb significantly more noise than a uniform wall property over a reasonably broad frequency 
band and with multiple radial modes. For the typical example given in this preliminary study, which 
has an absorber length equal to the casing diameter, distributed wall property gives an 8.5 dB 
improvement from the uniform wall property which is itself optimized. 
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The wall in the present study is modelled as a locally reactive impedance consisting of micro-
perforated panel (MPP) backed by a cavity. Alternatively, we also consider replacing the MPP by 
an interface impedance with components of mass, spring and damper. These generic components 
have constant properties independent of frequency. This contrasts with active control schemes 
(Thomas et al 1994, Nauhaus et al 2003) in which equivalent wall properties are functions of 
frequency and may vary from time to time. In active control, each duct acoustics mode requires at 
least one independent actuator, or control channel. Similarly, we increase the number of 
independent passive wall properties when the number of radial modes to be attenuated increases. 
Note that the total absorber length is fixed for a given problem. 

In a two-dimensional planar duct, mode n has a wavelength equal to n/2 times the duct height. 
When the source frequency just reaches a cut-on frequency, sound is actually bouncing between the 
two walls. The situation is similar in circular ducts but with a radial wave distribution different from 
its planar counterpart. In addition, there is a circumferential mode number, denoted here as m, 
which is determined by the source characteristics. The mode of m=n=0 corresponds to the plane 
wave. In our study, we fix m as 16, which is a typical value in aero-engine applications (Rienstra & 
Eversman 2001, Sun et al 2008). 

At a high frequency, many cut-on modes appear and it is known that the low-order cut-on modes 
are more difficult to control. In aircraft applications, the out-of-duct radiation of these low-order 
modes may be focused in lobes that are closely aligned with the flight direction. It is thus less of a 
concern for flight certification. Nevertheless, noise control at all modes would help reduce acoustic 
fatigue and is always desirable. The excitation of a particular radial mode depends on the source 
distribution. If the source is taken as a concentrated point, low-order modes are excited more 
strongly when the source is closer to the outer radius. In this study, we place a point source at a 
radial position equal to 88% of the outer radius, which is considered to be a typical peak position 
for the aerodynamic loading along a blade span. 

The approach taken by this study is numerical optimization for the duct wall impedance 
distribution. A very accurate numerical scheme of Chebyshev collocation is adopted. Details are 
given in Sec. 2 with method validation. Sec. 3 presents the numerical results for single frequency 
while Sec. 4 extends the results to broadband frequency. Conclusions are given in Sec. 5. The work 
presented below consists of two parts, one using the conceptual wall resistance (Figure 2) and the 
other is based on the practical implementation of microperforated panel (Figures 3-5). The former 
part was presented at ICSV 18 (Rio de Janeiro, 10-14 July 2011). 

2. NUMERICAL METHOD AND ITS VALIDATION 

As shown in Figure 1, we consider an infinite-length annular duct of outer (tip) radius *
tipr  and inner 

(hub) radius *
hubr . Spinning pressure pattern creates such noise that it can be represented by a point 

source at radius * *
sr r=  with a circumferential dependence of ( )exp imθ , where m  is the 

circumferential modal index and θ is the angular coordinate. The speed of sound is *
0c  and the 

frequency is *f . Before proceeding to formulation, all variables are normalized by using *
tipr  as the 

length scale, * *
0/tipr c  as the time scale, and the undisturbed air density *

0ρ  as the density scale. All 

variables with superscript asterisks are dimensional, and the removal of such superscript implies the 
dimensionless version of the same variable. For example, dimensionless frequency is defined as 

* * *
0/tipf f r c= and a typical value of interest is f=(4000Hz)(0.5m)/(340m/s)= 5.88. We choose f=6 for 

most examples. 

The configuration shown in Figure 1 has an absorber of dimensionless length ML  sandwiched in an 
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otherwise infinite annular passage formed between the radii of hubr  and 1tipr = . The absorber has a 

locally reactive impedance with a cavity of distributed depth hc(x), and a face impedance which can 
be either a microperforated panel (MPP) or a generic dynamic element. Since the cavity already has 
stiffness and air mass, the most useful generic element would be a frequency-independent 
resistance, denoted by R. The total acoustic impedance seen at 1tipr r= =  is written as  

 

*

* * * *
0  or  

,
/ / tan

tip mpp

c c
cavity face cavity

air c cr Z R

cp p
Z Z Z Z

c r r i k h

ρ
ρ φ φ

=

= = = + =
∂ ∂ ∂ ∂

, (1) 

where 2 fω π=  is the angular frequency, which is also identical to the dimensionless wavenumber 
* * *

0/tipk r cω= ,φ  is the velocity potential related to the sound pressure via /p t iφ ωφ= −∂ ∂ = −  with a 

time dependence of i te ω . Here, , ,  and c c cc kρ  are, respectively, the fluid density, speed of sound and 

wavenumber in the cavity, which can be different from that of air, such as a filling by fibrous sound 
absorption material. For most examples given, however, air is assumed, hence 1,c c cc k kρ = = = . 

 

 

 

 

 

 

 

 

Figure 1: The theoretical and numerical configurations. A far-left point source introduces a packet of propagating 

incident waves, ( ) ( )in rφ , which is scattered by an absorber segment of length ML  with distributed cavity depth 

( )ch x  and perhaps an MPP with distributed perforation ratio and aperture diameter. The computational domain is 

truncated at a length of UL  in the upstream, and DL  in the downstream of the absorber. The non-uniform axial and 

radial Gauss Lobatto grids are also illustrated for the middle domain of length ML . 

If an MPP is used at tipr r= , the surface-averaged panel impedance is  (Maa 1992),  

 1
2 2

1
32 1 /32 1 0.85

2 9 /2

p
mpp p

t k
Z K ikt i kd

d K

η ησ −
  
  = + + + + +

  +  
, (2) 

where ,  and pd t σ  are aperture diameter, panel thickness and porosity, respectively, and  

 
*

* * *
0 0

,
2tip

d k
K

c r

ηη
ρ η

= =  (3) 

are the dimensionless viscosity and ratio of aperture diameter to the boundary layer, respectively.  

On a real rotating blade, sound sources are mainly dipole in nature and waves propagate in both 
upstream and downstream directions. Complex reflection and interference pattern exists in a real 
passage. To focus on absorber optimization using wall impedance, we consider an elementary 

Far-field 
point source 

    

LM 

LD 

rs 

* , 1tipr r =  

Non-uniform cavity height 
hc(x) behind MPP 

Actual incident 
wave φ(in)(r) 

LU 

rhub x=0 +x 

Mesh, 
Eq. (8) 
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source model. Imagine that a point source exists in a far upstream location at a radial position of 
r=rs, the radiated wave may be separated into propagating (cut-on) and non-propagating (cut-off) 
modes in a rigid-wall duct. The former is considered as the given incident wave from the far left, 
which is then scattered by the finite absorber giving reflected and transmitted waves. 

The modes take the form of ( )xmnik x
mne rφ− , where 2 2

xmn mnk k k= −  is the axial wavenumber 

corresponding to each radial modal wavenumber mnk . The modes are the non-trivial solutions to the 

eigen-value equation with rigid-wall boundary conditions: 

 ( )2 1 2 2 2

1
, 0, 0

hub
rr r mn mn mn r mn r mnr r r

r m r kφ φ φ φ− −
= =

∂ + ∂ − = − ∂ = ∂ = . (4) 

A point source of unit strength is expanded as 

 ( ) ( ) ( )
( ) ( )

1

1 12 21

, hub

hub hub

mn srin in s mn s
s mn mn mn

n
mn mnr r

r r rdr r r
r r A A

rdr rdr

φ δ φ
δ φ

φ φ

∞

=

−
− = = =




 
 (5) 

with superscript ‘in’ signifying ‘incidence’. The actual incident wave consists of all the propagating 
modes satisfying mnk k≤ , hence   

 ( ) ( ) ( ) ( )xmn

mn

in in ik x
mn mn

k k

r A e rφ φ−

≤

=  . (6) 

An example of incident wave packet ( )inφ  is shown in the left-hand side of Figure 1 with 0.88sr = . 

As shown in Figure 1, x=0 is placed at the centre of the absorber, and the numerical solution is 
sought in the domain truncated at a distance of ,U DL L  from the two edges of /2Mx L= , 

respectively. The method of Chebyshev collocation is used in conjunction with an out-going wave 
condition for the scattered sounds at the domain boundaries of /2 , /2M U M Dx L L L L= − − + . Details 

of the numerical method is described in (Huang 2008) for a similar two-dimensional problem in 
Cartesian coordinates. Here, the problem is posed in the cylindrical coordinates, with the Helmholtz 
equation and the associated out-going wave condition derived from the following pseudo-derivative 
operator Ξ : 

 ( ) ( ) ( )1 2 2 2 2 2 1 2 20, / 0, /s
xx rr r r rr k m r n i k r m rφ φ− − − ∂ + ∂ + ∂ + − = ∂ ∂ + Ξ = Ξ = − ∂ − ∂ −  .   (7) 

The boundary condition is applied on the scattered field, ( ) ( )s inφ φ φ= − . Here, n in / n∂ ∂  is the 

outward normal on the boundary. The radial derivative operator r∂  is represented by the Chebyshev 

derivative matrix, and Ξ  is implemented numerically by matrix square-root through eigen-value 
decomposition (diagonalization) of matrix (Huang 2008). The choice of the individual eigen-value 
square-root is such that the waves propagating away from the scatterer are retained. Note that the 
rigid-wall boundary conditions of / 0rφ∂ ∂ =  at hubr r=  and 1r =  are embedded in the derivative 

matrix by replacing the velocity potential on the walls by those at the inner grid points. As a test of 
accuracy, A point source at 0.88sr =  is launched at frequency 6f =  with 5 cut-on modes. The 

magnitudes of error at the downstream exit are 146.1 10−× , 141.5 10−× , 131.2 10−× , 135.8 10−×  and 
125.4 10−× for the five modes, respectively. Similar high accuracy was achieved for the planar waves 

in (Huang 2008), which was also compared favourably with a perfectly matched layer technique 
(Singer & Turkel 2004). However, the latter has the advantage of being easier to use in localized 
numerical schemes while our scheme is more suitable for idealized models with moderate 
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computational domain and where high accuracy is desirable. The Gauss-Lobatto grid (Boyd 2001) 
used,  

 ( ) ( )1 1 cos / /2, 0,2, ,j hub hub r rr r r j N j Nπ= + −  −  =   , (8) 

is also illustrated in Figure 1 (labeled as ‘mesh’), and the grid density used in the axial direction is 
the same as that in the radial direction. The following set of geometric parameters is used in the 
accuracy test, and these will also be considered as the “default” values in the subsequent examples 
unless otherwise specified, 

 0.3, 0.88, 30, 1, 2, 0.03hub s r U D M cr r N L L L h= = = = = = = . (9) 

The typical frequency used is 6f =  but broad frequency band is considered in Sec. 4.  

3. WALL IMPEDANCE OPTIMIZATION FOR SINGLE FREQUENCY 

Before optimizing the wall impedance, we study the modal behaviour of lined duct as well as the 
performance of sound absorption by a uniform segment of absorber which will be used as a basis 
for comparison with distributed wall impedance. First, the upper rigid wall is replaced by the 
following impedance condition at 1r =  as follows,  

 ( )1

1
/ 0

r
r ikZφ φ−

=
∂ ∂ + = . (10) 

The eigen-value problem is then solved in the same way as the case for the rigid walls but all modes 
are expected to decay with axial distance. The mode with the lowest decay rate is the main concern. 
So, a logarithmic attenuation rate per unit axial distance equal to the tip radius, Lr, is defined below 
for this mode, 

 ( )( ) ( )10 ' ' minmin
20log exp Im 8.686 Im  dBr xmn xmnL k k = − =  −    . (11) 

The modal index is here denoted by n’ and the modal distribution ( )'mn rφ  is expected to be similar 

to the rigid-wall mode of 'n n=  when the wall impedance is only slightly different from a rigid 
wall. In general, however, each decaying mode n’ consists of all rigid-wall modes and the ‘cut-on’ 
mode can only be loosely defined as the ones whose attenuation rate is very small. 

Figure 2(a) shows the result of modal calculation with a cavity depth fixed at 0.03ch =  and the 

frequency fixed at 6f = , while the resistance R varies. A peak value of 10.43 dBrL =  is obtained 

for 2.15R = . Attenuation vanishes towards 0R →  as there is no damping, and it does so again 
when R → ∞  as the wall becomes effectively rigid. Figure 2(b) shows the complex, least 
attenuating mode, which can be expanded as a combination of rigid-wall modes with the first five 
modes having the amplitudes of 1.173, 1.081, 0.355, 0.194 and 0.128. When both cavity depth hc 
and resistance R are allowed to vary, a higher value of Lr can be obtained for any specific 
frequency. The optimal absorber parameters are shown as functions of frequency in Figure 2(c) 
using a twin set of coordinate labels. Higher resistance and shallower cavity are required for higher 
frequency. The corresponding optimal Lr is shown in Figure 2(d). Notice that the value of Lr shoots 
up as frequency goes below 4.5 or so, and this actually signifies the cut-on of the relevant rigid-wall 
modes which are now all attenuated. For frequencies above about 6, the optimal Lr goes below 
around 10 dB, which implies that these “cut-on” modes are difficult to attenuate. 

When a finite absorber segment is used, sound is partly reflected, partly transmitted, and the bulk 
sound power is hopefully absorbed. Time-mean sound energy flux is obtained by integrating the  
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Figure 2: Optimization for the uniform wall impedance for m=16. (a) Attenuation Lr as a function of wall resistance R 
for hc=0.03. (b) The least attenuating radial mode for the peak condition in (a) with R=2.15. (c) Optimal resistance R 

(see the left coordinate) and cavity depth hc (right coordinate) for each frequency. (d) Variation of the optimal 
attenuation Lr with respect to frequency corresponding to the parameters in (c). 

axial intensity flux xI  while sound absorption is obtained by integrating the radial intensity,  

 
( ) ( )( )
( ) ( )( )

1*

/2*

/2

1
Re / , 2 ,

2
1

Re / , 2 ,
2

hub

M

M

x x xr

L

r abs rL

I r p x W I rdr

I x p r W I dx

φ π

φ π
+

−

= ∂ ∂ =

= ∂ ∂ =




 (12) 

where asterisks here denote complex conjugate. The sound powers for the incident, reflected, 
transmitted and absorbed are denoted by , ,in ref exW W W  and absW , respectively. Coefficients for sound 

absorption, α , reflection, β , are defined below together with the transmission loss (TL) and 
insertion loss (IL), 

 ( ) ( )( )10 10/ , / , 10log / , 10log /abs in ref in in ex in ref exW W W W TL W W IL W W Wα β= = = = + . (13) 

To examine the distribution of sound absorption along the absorber, the display of ( )rI x  alone can 

be misleading since the downstream portion has low values of ( )rI x  as sound is gradually 

absorbed. In other words, some sort of relative absorption ratio is more meaningful. We first use the 
actual overall transmission loss, TL, to define an equivalent attenuation rate Lr comparable to that 
defined for the infinite duct in Eq. (11), and use this to construct an equivalent local sound energy 
flux distribution against which ( )rI x  will be normalized and denoted as 1rI ,  

 ( ) ( ) ( ) ( )1
1 10/ , exp / 10logr M r r LE rL TL L I x I x x x L e = = −  , (14) 

where /2LE Mx L= −  is the leading edge position of the absorber. The other quantity to be analyzed 

in a normalized manner is the amplitude of the sound expanded in terms of rigid-wall modes. The 
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normalization is based on the quadratic sum of the incident wave, and a decibel level is defined 
below, 

 ( ) ( ) ( ) 22

1010log  dB
mn

in
n mn mn

k k

SPL x A x A
≤

 
=  

 
 . (15) 

Optimization is now conducted for the total transmission loss (TL) using the cavity height ( )ch x  

and MPP design parameters, including the aperture diameter d and porosity σ, while the panel 
thickness tp is held as a constant for practical implementation convenience. For the examples given 
in this study, the dimensionless thickness is tp=0.02, which corresponds to 1mm when * 0.5mtipr = . 

Chebyshev functions are used to construct a smooth distribution for each variable, 

 ( ) ( ) [ ]1

0

cos cos , 1, 1n
n

f x a n x x
μ

μ
−

=

= ∈ − + . (16) 

A uniform property over the whole absorber corresponds to μ=0, and such a homogeneous absorber 
serves as a reference for studying the gain by a non-uniform absorber.  

When a point source is launched at 0.88sr = , the amplitudes of the five propagating modes are 

0.61, 0.22, 0.43, 0.48 and 0.41, respectively, which is a fairly uniform spread of modes. Figure 3(a) 
displays the pressure contour with an insert for the normalized local sound absorption rate 1rI   

I
r1

↑

x

r

(a) Pressure contour, f=6.00, TL=58.9 dB
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(b) Modal amplitudes, α=99.952%, β=0.042%
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Figure 3: Almost complete absorption of all five propagating modes by a finite absorber with distributed impedance 
with the order of Chebyshev functions 4μ =  optimized for a single frequency. The insert in sub-figure (a) and the 

sudden drop in modal amplitudes in (b) towards 1x =  show strong sound absorption towards the end of the absorber. 
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defined in Eq. (14). The overall absorber performance is written in the titles of sub-figures (a) and 
(b). High TL is achieved with negligible sound reflection. The insert in Figure 3(a) shows that the 
absorption mainly takes place near the downstream end of the absorber above the oblique pressure 
contour lines. Note that, if the absorber property is uniform, say using the best property shown in 
Figure 2(a), 0.03, 2.15ch R= = , the local absorption curve ( )1rI x  would be rather uniform over the 

whole absorber length. Figure 3(b) shows the normalized modal amplitudes with sharp drop near 
the absorber trailing edge x=1. The exact mechanism needs further investigation but it surely has to 
do with the complex wave scattering caused by the impedance distribution. Figure 3(c) shows the 
distributions of the optimized cavity height (hc, solid line) and MPP porosity (σ, dashed line) with 
five pivotal points marked along the curves. Figure 3(d) gives the distribution of optimized aperture 
diameter. Together, Figures 3(c) and 3(d) specify the distributed wall impedance design. 

4. OPTIMIZATION FOR BROADBAND FREQUENCY 

Having examined the performance of the absorber optimized for 6f = , it must be emphasized that 
such absorber is of little use for broadband noise. A new optimization is conducted to maximize the 
total sound absorption over a finite frequency band of [ ]4.75,7.5f ∈ . The lower limit of 4.75 is so 

chosen that, according to Figure 2(d), the modes are not easily cut off by a uniform absorber. The 
higher limit of f=7.5 could be further extended but the essential features of results are expected to 
remain unchanged. Within this frequency band, the point source strength is assumed to be a 
constant. As the actual incident wave packet only contains the propagating modes, the high 
frequency sound has more energy content hence higher weighting in the optimization process. A  

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−60

−40

−20

0

x

SP
L n (

dB
)

(a) Modal amplitudes, α=99.304%, β=0.060%, at f=6
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Figure 4: Broadband performance achieved by optimizing 10 segments of wall impedance consisting of MPP and cavity 
of various depth. (a) Modal absorption for the typical frequency of 6. (b) Optimized porosity σ and cavity depth hc. (c) 

Optimized aperture diameter d. (d) TL spectra.  
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total of 12 discrete frequency points are chosen and denoted as f12,  

 12 4.75, 5.0, 5.25, , 7.5f =  . (17) 

Chebyshev expansion, Eq. (16), with order 10μ =  is used to describe the wall properties. The 
broadband optimized result is shown in Figure 4. The energy-averaged TL is 21.9 dB. When the 
frequency interval of 0.25fΔ =  is refined to /4fΔ , similar spectral performance is obtained and the 
total TL actually increases to 22.3 dB. Such performance is more or less equivalent to the peak 
attenuation rate shown in Figure 2(a), 10.43 dBrL = , which implies 20.86 dBr MTL L L= = . 

However, the peak in Figure 2(a) is obtained for the single frequency of 6f = . To make a fair 
comparison, a separate optimization is conducted for the same 12 frequency points using a uniform 
absorber (i.e., 0μ = ). The result is 13.3 dBTL =  with the optimized parameters of 

2 320% (maximum specified), 1.966 10 , 0.114 10ch dσ − −= = × = × . 

In other words, the gain by the distributed absorber property is  

10 0
21.9 13.4 8.5 dBTL TL TLμ μ= =

Δ = − = − = . 

Compared with Figure 3(b), Figure 4(a) does not show a dramatic reduction of normalized modal 
coefficients, but it does still show a degree of enhancement of absorption towards the end of the 
absorber segment. Figure 4(b) shows the optimized cavity depth (hc, solid line) and MPP porosity 
(σ, dashed line), while Figure 4(c) gives the aperture diameter d. Not much can be said about these 
distributions and an in-depth analysis is not expected to be easy. It is therefore necessary to check if 
these distributions are only useful for the 12 discrete frequencies, denoted earlier as f12 in Eq. (17), 
used in the optimization. Figure 4(c) shows the TL spectrum with f12 shown in open-square stem 
plot. Three more frequencies calculated within each frequency interval are shown in open circles. 
These do not deviate from the pattern of TL for f12. The conclusion is that the optimized wall 
impedance works for a broad frequency band. When the design optimized for f=6, which is shown 
in Figures 3(c) and 3(d), is used to calculate for the broadband, the result is shown in solid line in 
Figure 4(d). This is a resonance-like behaviour in the sense that the good performance at f=6 does 
not carry over to other frequencies especially the higher frequencies. 

The second check of whether the optimized design is peculiar to some frequency or source 
characteristics is carried out by varying the circumferential mode m with results shown in Figure 5.  

4.5 5 5.5 6 6.5 7 7.5 8
0

5

10

15

20

25

30

f

T
L

 (
dB

)

 

 

m=15, TL=18.2dB m=16, 21.9dB m=17, 22.3dB

 

Figure 5: Comparison of performance for 3 circumferential modes using the MPP optimized for mode m=16. 
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Using the same design shown in Figures 4(b) and 4(c), the absorption for the two neighbouring 
modes, m=15 and 17, is calculated and the results are presented in Figure 5 in a grouped bar chart. 
The energy-averaged transmission losses for the three modes of 15, 16 and 17 are, respectively, 
18.2, 21.9, 22.3 dB. The fact that the result for m=16 is naturally sandwiched between the two other 
modes implies that the broadband design is not peculiar to one source character in a way like 
resonators are for their resonance frequencies. The fact that the performance for m=15 is worse than 
m=16 is expected since lower order modes are known to be more difficult than higher order modes. 

5. CONCLUSIONS 

The numerical simulations presented here are a starting point in the search for improved passive 
control of complex duct noise. The following preliminary conclusions can be drawn. 

1. An impedance wall can be optimized for absorbing a pure tone with uniform wall properties. 
Typically, the optimal local resistance should be increased for higher frequencies. However, the 
optimal performance deteriorates with frequency. When an axial distribution of wall properties 
is considered, significantly better sound absorption may be achieved. In the example given, the 
bulk sound absorption takes place near the downstream edge of the absorber.  

2. When optimization is applied to a broad frequency band, using a microperforated panel with 
cavity of various depth, it is shown that improved performance can be obtained for the difficult 
regime of high frequencies. The overall absorber performance is much improved from the 
optimal uniform absorber. The optimized wall property distribution shows interesting 
undulations for which more work is required to examine the exact working mechanisms. 

3. The optimal performance obtained for a set of discrete frequencies in a finite frequency band 
remains to be good for all frequencies in the band. Similar conclusions are achieved for different 
circumferential modes although noise of lower modal index is in general more difficult to 
attenuate. 
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